
- •Лавинно-пролітний діод
- •Будова і зонна діаграма
- •Принципи генерації
- •Типова конструкція лдп
- •Використання лпд для генерації нвч-коливань
- •Параметри лпд
- •Діод Ганна
- •Зона структура матеріалу
- •Механізм генерації
- •Утворення доменів
- •Режим прольоту
- •Умова реалізації генерації
- •Генерація нвч-коливань в діодах
- •Недоліки та переваги генераторів ганна
- •Оптоелектроніка
- •Переваги ое
- •Недоліки ое
- •Основні прилади ое
- •Основні поняття оптики
- •Електромагнітні хвилі
- •Механізми поглинання світла
- •Заломлення та відбиття cвітла
- •Формула друде-фойгта
- •Спектри пропускання та відбиття
- •Прямозонні та непрямозонні матеріали
- •Визначення Еg
- •Екситонне поглинання
- •Люмінесценція
- •Фоторезистивний ефект
- •Оптоелектроніка
- •Напівпровідники для виготовлення джерел світла світлодіоди
- •Параметри світлодіодів
- •Напівпровідникові лазери
- •Напівпровідникові фотоприймачі
- •Напівпровідникові фотоприймачі
- •Фотодіоди
- •Фотодіоди
- •Фотоприймачі з внутрішнім підсиленням
- •Основні параметри фотоприймачів
- •Фізичні принципи роботи се
- •Конструкція се
- •Поява струму при освітлені
- •Процеси у фотоперетворювачах
- •Точка максимальної потужності
- •Еквівалентна схема се
- •Сонячний спектр в космосі та на землі
- •Обмеження ефективності се
- •3) Напруга холостого ходу (Voc).
- •Для даного сонячного спектру, існує оптимальна ширина забороненої зони матеріалу
- •Гетеропереходи
- •Характеристики тонкоплівкових феп
- •Стан гетерограниці
- •Вплив границь зерен
- •Типи потенціальних бар’єрів на межі зерна
- •Вплив часу життя носіїв заряду на характеристики се
- •Нові матеріали поглинаючих шарів се
- •Багатоперехідні (каскадні) сонячні перетворювачі
- •Оптрони та їх застосування
- •Зростання ккд се
- •Оптрони та їх застосування
- •Оптрони та їх застосування
- •Оптрони та їх застосування
- •Основи мікроелектроніки
- •Елементи конструкції іс
- •Класифікація ic
- •Система умовних позначень іс
- •Гібридні ic
- •2 Необхідно мати універсальні іс.
- •Гібридна технологія
- •Плівкові конденсатори
- •Технологія створення ic
- •Технологія виготовлення інтегральних мдн- структур
- •Ізоляція
- •Біполярні транзистори
- •Багатоемітерні транзистори
- •Бт з бар'єром шотткі
- •Мон (мдн)- транзистори
- •Резистори
- •Конденсатори
- •Іс з інжекційним живленням
- •Іс з інжекційним живленням
Генерація нвч-коливань в діодах
-
Як будь-який генератор НВЧ - діапазону, генератор Ганна характеризується потужністю, що генерується, довжиною хвилі, або частотою коливань, що генеруються, коефіцієнтом корисної дії, рівнем шумів та іншими параметрами. Вихідна безперервна потужність генераторів Ганна в прольотному режимі звичайно становить десятки - сотні міліват, а при імпульсній роботі досягає сотень ват.
-
Робоча частота в прольотному режимі обернено пропорційна довжині або товщині високоомної частини кристала (f = υ/l). Зв'язок між потужністю, що генерується і частотою можна представити у вигляді:
Pвих = U2/z = E2l2/z = E2υ2/zf2 ~ 1/f2
-
Потужність НВЧ - коливань, що генеруються, залежить від повного опору z або від площі робочої частини високоомного шару напівпровідника. Наведене співвідношення вказує на те, що очікувана зміна потужності з частотою пропорційна 1/f2. Верхня межа робочої частоти діодів Ганна становить сотні гігагерць (рис.).
|
Генератори Ганна з GaAs можуть генерувати НВЧ - коливання від 1 до 50 ГГц. Дещо більші частоти отримані на генераторах Ганна з InP у зв'язку з більшими значеннями максимальних швидкостей електронів, але якість приладів із цього матеріалу значно нижча через недостатнє відпрацювання технології виготовлення матеріалу. Перевага InP перед GaAs - більше значення порогової напруженості електричного поля (10,5 і 3,2 кВ/см відповідно). Це повинно дозволити створити генератор Ганна з більшою вихідною потужністю. Для створення більших частот коливань, що генеруються представляють інтерес потрійні сполуки GaInSb, оскільки в них великі дрейфові швидкості електронів. Ефект Ганна спостерігається, крім GaAs і InP, в електронних напівпровідниках CdTe, ZnS, InSb, InAs та ін., а також в Ge з дірковою провідністю. |
Недоліки та переваги генераторів ганна
-
Коефіцієнт корисної дії генераторів Ганна може бути різним (від 1 до 30%), оскільки технології виготовлення приладів і якість вихідного напівпровідникового матеріалу істотно розрізняються. У зв'язку з можливою наявністю в кристалі генератора Ганна декількох неоднорідностей зародження домену може відбуватися в різні моменти часу на різній відстані від анода. Тому частота коливань буде змінюватися, тобто можуть виникати частотні шуми. Крім частотних шумів в генераторах Ганна існують амплітудні шуми, основною причиною появи яких є флуктуації у швидкостях руху електронів. Зазвичай амплітудні шуми в генераторах Ганна малі, оскільки дрейфова швидкість в сильних електричних полях, що існують в цих приладах, насичена і слабко змінюється при зміні електричного поля.
-
Важливим для практичного застосування генераторів Ганна є питання про можливість їх частотної перебудови у досить широкому діапазоні. З принципу дії генератора Ганна ясно, що частота його повинна слабо залежати від прикладеної напруги. Зі збільшенням прикладеної напруги трохи зростає товщина домену, а швидкість його руху змінюється незначно. В результаті при зміні напруги від порогової до пробивної частота коливань збільшується всього на десяті доля відсотка.
-
Термін служби генераторів Ганна відносно малий, що пов'язано з одночасним впливом на кристал напівпровідника таких факторів, як сильне електричне поле і перегрів кристала через виділення в ньому потужності.