- •1)Появление и развитие информатики. Структура информатики. Появление и развитие информатики
- •Структура информатики
- •2)Информация и ее свойства. Формы представления информации. Единицы измерения информации. Информация и формы ее представления.
- •3)Понятие количества информации. Формулы Хартли и Шеннона. Методы измерения информации.
- •Формула Шеннона:
- •Вероятностный метод измерения информации
- •5)Понятие архитектуры и структуры. Основные блоки пк и их назначение
- •Элементы конструкции пк
- •7) Микропроцессор, его структура, и назначение. Основные параметры микропроцесора.
- •8) Классификация и назначения программного обеспечения пк
- •Классификация программных продуктов
- •9)Системное программное обеспечение пк. Понятия операционной системы и операционных оболочек. Функции ос.
- •10) Классификация прикладных программных продуктов (в виде пакетов прикладных программ).
- •Проблемно-ориентированные ппп.
- •Ппп автоматизированного проектирования.
- •Ппп общего назначения.
- •5. Офисные ппп - охватывает программы, обеспечивающие организационное управление деятельностью офиса:
- •Настольные издательские системы.
- •9. Системы искусственного интеллекта.
- •11)Инструментальное по.
- •Средства для создания приложений.
- •12. Назначение и основные функции ос
- •Прочие функции операционных систем
- •13) Файловая система, понятия файла и каталога, полного имени файла, пути к файлу, атрибутов файлов. Использование шаблонов в имени файла.
- •14)Физическое размещение данных на дисках. Организация доступа к файлу. Назначение fat-таблицы при поиске файлов.
- •2.2 Файловая система fat
- •15)Файловая система ntfs. Сравнительная характеристика fat 32 и ntfs Файловая система ntfs.
- •Сравнительная характеристика fat 32 и ntfs
- •16)Взаимодействие с аппаратными средствами. Служебные программы: дефрагментация диска, проверка состояния диска, уплотнение диска, форматирование дисков. Средства управления памятью.
- •Средства проверки дисков
- •3.2 Средства «сжатия» дисков
- •3.3 Средства управления виртуальной памятью
- •3.4 Средства кэширования дисков
- •3.5 Средства резервного копирования данных
- •17) Операционные системы Windows, Linux, Unix. Развитие графической системной среды.
- •Особенности
- •18)Офисные системы. Текстовые редакторы.
- •Режимы отображения документа
- •19) Приемы работы в процессоре Microsoft Word
- •2.3. Редактирование текста
- •2.3. Средства редактирования текста
- •2.4. Форматирование текста
- •2.5. Настройка шрифта
- •20) Приемы и средства автоматизации разработки документов
- •3.1. Использование шаблона для создания документа.
- •20) Этапы решения задач эвм
- •Модульное программирование
- •21) Языки программирования. Понятия языка низкого и высокого уровня. Классификация языков программирования
- •Язык ассемблер
- •Языки программирования высокого уровня
- •24)Язык программирования высокого уровня. Конструкции языка (константы, переменные, выражения, функции).
- •25) Структура программы. Операторы. Простые операторы, структурированные операторы. Структура программы
- •Алгоритмический язык
- •Паскаль
- •27) Основные понятия электронных таблиц: рабочая книга, рабочий лист, диапазон ячеек, ячейки и их адресация. Ввод, редактирование и форматирование данных.
- •Ввод, редактирование и форматирование данных
- •Ввод текста и чисел
- •Форматирование содержимого ячеек
- •Числовые форматы.
- •Текстовые форматы.
- •Изменение формата данных в ячейке.
- •28) Автоматизация ввода данных в Excel
- •Автозавершение
- •Автозаполнения числами
- •Заполнение прогрессией.
- •Автозаполнение формулами
- •29) Вычисления в электронных таблицах. Способы ввода формул. Абсолютная и относительная адресация. Встроенные функции Excel (использование мастера функций).
- •Ссылки на ячейки
- •3.2. Ссылки абсолютные и относительные
- •Относительная адресация.
- •Абсолютная адресация.
- •Использование стандартных функций
- •Палитра формул
- •Использование мастера функций
- •Ввод параметров функции
- •Суммирование
- •30) Построение диаграмм и графиков в электронных таблицах.
- •6.1. Выбор типа диаграммы
- •6.2.Выбор данных
- •6.3. Оформление диаграммы
- •6.4. Размещение диаграммы
- •6.5. Редактирование диаграммы
- •31) Основные понятия баз данных и субд. Классификация баз данных. Архитектура файл-сервер, клиент-сервер, основные особенности.
- •Классификация баз данных
- •32) Виды моделей данных (иерархическая, сетевая, реляционная)
- •Сетевая модель данных
- •Реляционная модель данных
- •33) Типы связей (один к одному, один ко многим, многие ко многим)
- •34) Построение информационно-логической модели. Архитектура субд. Понятие инфологической модели.
- •Архитектура субд
- •Понятие информационно-логической модели
- •35) Назначение и классификация компьютерных сетей.
- •36) Локальные вычислительные сети: назначение, состав, основы функционирования.
- •37) Понятие топологии сети и базовые топологии лвс
- •38) Методы доступа к передающей среде
- •39) Способы объединения локальных и глобальных вычислительных сетей.
- •40) Представление о структуре и системе адресации Internet.
- •41) Способы организации передачи информации
15)Файловая система ntfs. Сравнительная характеристика fat 32 и ntfs Файловая система ntfs.
Файловая система NTFS (New Technology File Sistem) была выпущена вместе с Windows NT 3.5 в 1993 году. По сравнению с FAT или FAT32, NTFS предоставляет пользователю целое сочетание достоинств: эффективность, надежность и совместимость. Файловая система NTFS применяется в операционной системе Windows NT/2000/XP.
Как и любая другая система, NTFS делит все полезное место на кластеры - блоки данных, используемые единовременно. NTFS поддерживает почти любые размеры кластеров - от 512 байт до 64 Кбайт, неким стандартом же считается кластер размером 4 Кбайт (7 секторов).
При установке NTFS, диск разделяется на две неравные части: первая отводиться под MFT (Master File Table - общая таблица файлов), называется MFT - зоной и занимает порядка 12% от общего размера диска, вторую часть занимают собственно ваши данные. MFT лежит в начале диска, каждая запись в MFT соответствует какому-либо файлу и занимает около 1 Кбайт. По своей сути это каталог всех файлов находящихся на диске. Любой элемент данных в NTFS рассматривается как файл, даже MFT.
MFT-зона всегда держится пустой - это делается для того, чтобы самый главный, служебный файл (MFT) не фрагментировался при своем росте. Остальные 88% диска представляют собой обычное пространство для хранения файлов.
Свободное место диска, однако, включает в себя всё физически свободное место - незаполненные куски MFT-зоны туда тоже включаются. Механизм использования MFT-зоны таков: когда файлы уже нельзя записывать в обычное пространство, MFT-зона просто сокращается (в текущих версиях операционных систем ровно в два раза), освобождая, таким образом, место для записи файлов. При освобождении места в обычной области MFT зона может снова расширится.
Первые 16 файлов (метафайлы) в MFT - зоне являются особой кастой. В них содержится служебная информация, они имеют фиксированное положение и они недоступны даже операционной системе. Кстати, первым из этих 16 является сам MFT - файл. Существует копия первых трех записей в третьей зоне.
Третья зона, в свою очередь, делит диск пополам. Это сделано для надежности, в случае утери информации в MFT - файле, всегда можно восстановить информацию. Все остальные файлы в MFT - зоне могут располагаться произвольно. Надо заметить, что в MFT - зоне теоретически кроме служебных файлов ничего не находиться. Но бывают случаи, когда места на той части диска, что отведена для пользователя, не остается и тогда MFT - зона уменьшается. Соответственно появляется место во второй половине диска для записи данных. Когда же в этой зоне освобождается достаточное количество свободного места, MFT - зона опять расширяется.
Главный каталог диска на NTFS - корневой - ничем не отличается от обычных каталогов, кроме специальной ссылки на него из начала метафайла MFT. Он представляет собой специфический файл, хранящий ссылки на другие файлы и каталоги, создавая иерархическое строение данных на диске. Файл каталога поделен на блоки, каждый из которых содержит имя файла, базовые атрибуты и ссылку на элемент MFT, который уже предоставляет полную информацию об элементе каталога. Каталог представляет собой бинарное дерево, т.е. в каталоге информация о данных на диске расположена таким образом, что при поиске какого-либо файла каталог разбивался на две части и ответ заключался в том, в какой именно части находиться искомое. Затем та же самая операция повторяется в выбранной половине. И так до тех пор, пока не будет найден нужный файл.
Имя файла может содержать любые символы, включая полый набор национальных алфавитов, так как данные представлены в Unicode - 16-битном представлении, которое дает 65535 разных символов.
Ко всему прочему, файлы NTFS имеют такой атрибут как сжатый. Любой файл или даже каталог может быть сжат. Сама операция сжатия происходит незаметно, так как скорость ее довольно высока. Используется так называемое виртуальное сжатие, т. е. одна часть файла может быть сжата, а другая нет. Сжатие осуществляется блоками. Каждый блок равен 16 кластерам.
В NTFS используется шифрование данных. Таким образом, если вам пришлось по каким – либо причинам переустановить систему заново, то зашифрованные файлы без соответствующей санкции прочитать не сможете.
NTFS - отказоустойчивая система, которая вполне может привести себя в корректное состояние при практически любых реальных сбоях. Любая современная файловая NTFS:
Быстрая скорость доступа к файлам малого размера;
Размер дискового пространства на сегодняшний день практически не ограничен;
Фрагментация файлов не влияет на саму файловую систему;
Высокая надежность сохранения данных и собственно самой файловой структуры;
Высокая производительность при работе с файлами большого размера.
FAT 32:
Высокая скорость работы;
Низкое требование к объему оперативной памяти;
Эффективная работа с файлами средних и малых размеров;
Более низкий износ дисков, вследствие меньшего количества система основана на таком понятии, как транзакция - действие, совершаемое целиком и корректно или не совершаемое вообще. У NTFS просто не бывает промежуточных (ошибочных или некорректных) состояний - квант изменения данных не может быть поделен на до и после сбоя, принося разрушения и путаницу - он либо совершен, либо отменен.
Пример: осуществляется запись данных на диск. Вдруг выясняется, что в то место, куда мы только что решили записать очередную порцию данных, писать не удалось - физическое повреждение поверхности. Поведение NTFS в этом случае довольно логично: транзакция записи откатывается целиком - система осознает, что запись не произведена. Место помечается как сбойное, а данные записываются в другое место - начинается новая транзакция.
Опыт показывает, что NTFS восстанавливается в полностью корректное состояние даже при сбоях в очень загруженные дисковой активностью моменты. Можно даже оптимизировать диск и в самый разгар этого процесса нажать reset - вероятность потерь данных даже в этом случае будет очень низка. Важно понимать, однако, что система восстановления NTFS гарантирует корректность файловой системы, а не данных.
