Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
логика.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
266.29 Кб
Скачать

Тема 7. Индуктивные умозаключения

 

Индуктивные умозаключения – это умозаключения, в которых связи между посылками и заключением таковы, что при истинных посылках заключение носит лишь правдоподобный характер.

Обобщающая индукция – это умозаключение, представляющее переход от знания об отдельных элементах класса к знанию о классе в целом.

Обратная дедукция – умозаключение, в котором высказывания В1В2, … Вn подтверждают высказывание А, если из А следуют высказывания В1В2, …ВnА непротиворечиво, а высказывания В1В2, … Вn не являются тождественно-истинными.

Умозаключением по аналогии (от древнегреч. analogia – «соответствие, сходство») называется рассуждение, в котором на основании наличия некоторых знаков у двух объектов делается заключение об их сходстве в других признаках.

 

Вопросы темы:

1.  Общая характеристика индуктивных умозаключений.

2.  Виды индукции.

3.  Сущности умозаключений по аналогии.

 

Теоретический материал по теме

 

Вопрос 1. Общая характеристика индуктивных умозаключений.

 

Индуктивные умозаключения представляют собой такие связи между посылками и заключением по логическим формам, при которых посылки лишь подтверждают заключение. Индуктивная логика  это формальная логика, поскольку отношение подтверждения – это отношение между высказываниями по их логическим формам. Однако индуктивная логика является не только формальной логикой. В процессе индуктивных рассуждений обычно используются специальные методологические средства, повышающие степень правдоподобия заключений.

 

Вопрос 2. Виды индукции.

 

Выделяют следующие виды индукции:

1.  Обратная дедукция и полная индукция. Такое умозаключение, где общее заключение о некотором классе предметов делается на основании изучения всех предметов этого класса. Полная индукция часто употребляется в математических и других строгих доказательствах.

2.  Неполная индукция: индукция через простое перечисление; индукция через анализ и отбор факторов; научная индукция.

 

Обратная индукция.

Одним из видов индуктивных заключений является обратная дедукция: высказывания В1В2, … Вn подтверждают высказывание А, если из А следуют высказывания В1В2, … ВnА непротиворечиво, а высказывания В1В2, … Вn не являются тождественно-истинными. Схема этого рассуждения такова:

Например:

Если студент успешно сдал экзамен, значит, он посещает занятия, читает учебник, делает домашние задания, правильно ответил на вопросы теста. Тот факт, что студент посещал занятия, читал учебник, делал домашние задания, правильно ответил на вопросы теста, подтверждает, что он успешно сдал экзамен.

Для того чтобы степень правдоподобия индуктивного вывода в случае использования обратной дедукции была выше, необходимо выполнять определенные методологические требования.

Во-первых, следует стремиться отыскать как можно больше разнообразных следствий, так как именно они, в отличие от одинаковых, в большей степени подтверждают высказывание. Например, для того чтобы подтвердить историческое возрастание темпов развития производительных сил, следует рассмотреть примеры, подтверждающие этот факт как в капиталистической, так и в первобытнообщинной, рабовладельческой, феодальной формациях.

Во-вторых, следует отыскивать наиболее сильные следствия, которые подтверждают высказывание в большей степени, нежели более слабые. Более сильным следствием по сравнению с С является следствие В, в случае если из А следует В, из А следует С, из В следует С, но из С не следует В.

Например, если студент не заведет с вечера будильник (А), он утром проснется поздно (В). Если студент не заведет с вечера будильник (А), он опоздает на лекцию (С). Если студент утром проснется поздно (В), он опоздает на лекцию (С). Но из того, что он опоздает на лекцию (С), не следует, что он проснется поздно (В), а может следовать то, что он не запишет материал полностью либо что его из-за опоздания вообще не пустят на эту лекцию.

Наконец, следует стремиться к поиску нестандартных следствий. Если из А следует В и В без А мало правдоподобно, а вместе с А весьма правдоподобно, то А при наличии В весьма правдоподобно.

Например, если в квартире живут брат и сестра (А), то остававшуюся с вечера в коробке последнюю конфету утром съел один из них (В). Утверждение В малоправдоподобно, если в этой квартире живут не только брат с сестрой, но и еще кто-то, например, ребенок сестры, но весьма правдоподобно в случае, если в квартире живет только два человека. В свою очередь, если остававшуюся с вечера в коробке последнюю конфету утром съел брат либо сестра, весьма правдоподобно, что в квартире живут только два человека.

 

Обобщающая индукция.

Обобщающая индукция – это умозаключение, представляющее переход от знания об отдельных элементах класса к знанию о классе в целом. Этот переход осуществляется путем экстраполяции содержащегося в посылках знания на более широкую область.

Существует два основных вида обобщающей индукции – полная и неполная.

В случае полной обобщающей индукции возможно изучение всех предметов, составляющих исследуемый класс. В данном случае индуктивное умозаключение представляет собой движение от знания об отдельных предметах класса к знанию обо всех предметах класса, и его схема имеет вид:

 

Предмет S1 обладает свойством Р

 

Предмет S2 обладает свойством Р

 

Предмет Sn обладает свойством Р

 

Предметы S1,S2, ..., Sn  элементы класса К, такие, что {S1S2, ..., Sn}=К.

Все предметы класса К обладают свойством Р.

 

Например:

В десятом классе 25 человек, о каждом из которых известно, что он занимается каким-либо видом спорта. Следовательно, все учащиеся десятого класса занимаются каким-либо видом спорта.

 

Гораздо чаще встречается неполная обобщающая индукция. Она применяется в том случае, когда изучить все предметы исследуемого класса невозможно, и представляет собой движение от знания о некоторых отдельных предметах класса к знанию обо всех предметах класса. Схема неполной обобщающей индукции имеет вид:

 

Предмет S1 обладает свойством Р

 

Предмет S2 обладает свойством Р

 

Предмет Sn обладает свойством Р

Предметы S1S2, ... , Sn  элементы класса К, такие, что {S1S2, ... , Sn}К и {S1S2, ..., Sn}< К.

Все предметы класса К обладают свойством Р.

 

Например, при исследовании поведения определенного вида животных постоянно встречаются данные об определенной реакции животных этого вида на определенный раздражитель, и делается вывод о том, что всем животным этого вида присуща подобная реакция на этот раздражитель.

Неполная индукция является лишь вероятностным знанием и не гарантирует точности результатов. Для повышения степени ее правдоподобия, как уже было сказано, используются различные методы. В зависимости от специфики этих методов неполная индукция подразделяется на два вида: популярную,ненаучную, индукцию и научную индукцию.

В процессе ненаучной индукции применяется так называемая методология здравого смысла. Она требует исследовать как можно больше случаев, где встречается изучаемый предмет, и рассматривать как можно более разнообразные предметы. Использование этих принципов помогает в некоторой степени повысить правдоподобие получаемых результатов, но тем не менее не дает оснований для того, чтобы они были достаточно правдоподобными.

В научной индукции обязательно используется научная методология. Этот вид неполной индукции подразделяется на индукцию через отбор случаев, исключающих случайные обобщения, и индукцию на основе общего, в процессе которой при установлении факта, принадлежит ли определенное свойство группе объектов, отвлекаются от информации о специфических признаках и свойствах этих объектов.

 

Методы установления причинных связей между явлениями.

Один из видов научной индукции составляют методы установления причинных связей между явлениями. В качестве научной методологии здесь выступают положения принципа причинности, который раскрывает взаимообусловленность и взаимосвязь вещей и явлений.

Причина – это явление, которое при определенных условиях порождает другое явление, называемое следствием. Принцип причинности выражает идею о том, что причинно-следственные связи являются объективными, не зависящими исключительно от желаний человека. Он также формулирует идею о том, что беспричинных явлений не существует, каждое событие, явление, любое изменение возникает в силу действия конкретной определенной причины или их совокупности. Наконец, он определяет направленность причинно-следственных связей: следствие не может появиться раньше причины, последняя предшествует ему.

В случае установления причинных связей между явлениями в рамках метода неполной научной индукции под причиной понимают только то обстоятельство, добавление которого к имеющимся обстоятельствам вызывает следствие – некое явление, событие, возникновение нового свойства у предмета и т.д. Поэтому при совершении этой операции выявляются только наиболее простые причинно-следственные связи.

Среди методов установления причинно-следственных связей между явлениями выделяют следующие.

 

Метод единственного сходства.

При использовании этого метода рассматривают разнообразные случаи, когда наблюдается некое явление а, и исследуют обстоятельства, предшествовавшие этому явлению. Если во всех изучаемых случаях в обстоятельствах, предшествовавших этому явлению, наличествует некое явление А, следовательно, явление А является причиной явления а. Схема данного метода выглядит следующим образом:

Следовательно, обстоятельство А есть причина явления а.

 

Например, летом растения вянут, если они растут в теплице или на открытом воздухе, при солнце и в тени, в ветреную и безветренную погоду, если не обеспечен их полив. Следовательно, отсутствие полива и есть причина того, что летом растения вянут.

 

Метод единственного различия.

При использовании этого метода рассматриваются два случая. В первом случае обстоятельства АВС предшествуют явлению а. Во втором случае одно из обстоятельств (А) отсутствует, явление а тоже отсутствует. На основании этого делается вывод о том, что именно это обстоятельство является причиной явления а.

Схема метода единственного различия:

 

АВС – а

 

ВС – 

Следовательно, обстоятельство А – причина явления а.

 

Например, если в одном случае здоровые растения будут удобрять, притенять и поливать, он будут хорошо расти. Если в другом случае здоровые растения будут поливать и притенять, но не будут удобрять, они не будут хорошо расти. Отсюда делается вывод о том, что причиной хорошего роста является наличие удобрений.

 

Соединенный метод сходства и различия.

При использовании соединенного метода сходства и различия, как это видно из его названия, объединяют оба предыдущих метода: исследуют группы обстоятельств, в которых наличествует один общий признак, предшествующие явлению а, а также рассматривают случаи, когда А в группах обстоятельств отсутствует, остальные обстоятельства имеют место, а явление а отсутствует.

В этом случае схема метода имеет вид:

АВС – а

 

АОК – а

.

.

.

АЕТ – а

 

 ВС – 

 

 ОК – 

.

.

.

 ЕТ – 

Следовательно, обстоятельство А есть причина явления а.

 

Метод сопутствующих изменений.

Этот метод используется, когда предшествовавшие явлению обстоятельства нельзя изолировать друг от друга и определить, что наличие какого-то признака предшествует явлению, а его отсутствие предшествует отсутствию явления. При применении этого метода исследуют изменения, происходящие как в обстоятельствах, предшествовавших явлению, так и в самом этом явлении. Если имеются обстоятельства АВС, которые предшествуют явлению а, и изменение одного из этих обстоятельств (А) при условии того, что остальные обстоятельства остаются неизменными, вызывает изменение явления а, то изменение этого обстоятельства А является причиной изменения явления а. В некоторых случаях посредством этого метода выясняется, что изменяющееся обстоятельство Аявляется причиной изменяющегося явления а.

Схема метода сопутствующих изменений:

А1, В, С – а1

 

А2, В, С – а2

.

.

.

Аn, В, С – аn

Следовательно, изменение А есть причина изменения а.

 

Метод остатков.

При использовании этого метода рассматривают сложное явление U. Это явление состоит из ряда простых явлений аbсd. Из предшествующего опыта известно, что простое явление а вызывается обстоятельством А, простое явление b вызывается обстоятельством В; простое явление С – обстоятельством с; и в то же время известно, что сложному явлению U предшествуют обстоятельства АВСD. Делается заключение о том, что оставшееся из предшествующих обстоятельств D является причиной оставшегося из простых явлений, то есть причиной d.

Этот метод был использован при открытии планеты Нептун. Астрономами было доказано, что движение планеты Уран имеет отклонение от вычисленной орбиты. При проверке, почему происходит отклонение, установили, что оно обусловлено влиянием уже известных планет, однако отклонение все еще объяснялось не полностью. Тогда предположили, что существует неизвестная планета, влияющая на движение планеты Уран. С помощью вычислений астроном Леверье определил положение этой гипотетической планеты, и она действительно была обнаружена в предполагаемом месте.

Применение метода остатков в социальном познании требует соблюдения определенных условий: должен быть известен как весь комплекс причин явления U, так и тот факт, что следствием этого комплекса причин АВСD является только явление U; кроме того, сумма следствий причин АВСD должна быть равна совокупному следствию сложной причины.