- •Билет 1 Определители второго порядка и их свойства
- •Билет 2 Определители третьего порядка и их свойства
- •Билет 3 Векторы. Основные определения
- •Билет 4 Действия над векторами
- •Билет 5 Разложение вектора по базису
- •Билет 7 Линейная зависимость и независимость векторов
- •Свойства линейно зависимых и линейно независимых векторов
- •23 Уравнение прямой в пространстве. Векторное, каноническое уравнение прямой.
- •24 Угол между прямыми в пространстве. Угол между прямой и плоскостью
- •26 Кривые второго порядка. Окружность. Эллипс.
- •27 Гипербола.
- •28 Парабола
- •29 Цилиндрические поверхности
- •30 Конические поверхности
- •31 Поверхности вращения – эллипсоид вращения
- •32 Эллиптический параболоид
- •3 5. Гиперболический параболоид
- •36. Комплексные числа, основные понятия
- •37.Действия над комплексными числами
- •38.Показательная форма комплексного числа. Действия над комплексными числами в показательной форме
- •39. Определители н-ого порядка правило крамера
- •40. Понятие матрицы
- •41. Действия над матрицами
- •43.Однородные системы уравнений, матричный метод решения систем уравнений
- •44. Метод Гаусса
- •45. Множество вещественных чисел и их свойства.
- •46 ( Предел последовательности)
- •47 (Верхние и нижний грани множеств)
- •48 (Частичный предел)
- •50 Второй замечательный предел
- •51 (Функция. Основные понятия. Предел функции.)
- •52. (Теоремы о функциях, имеющих предел.)
- •53. (Непрерывность функции, основные определения.)
- •54. (Теорема о непрерывности сложной функции.)
- •55 (Первая теорема Больцано-Коши)
- •56. Вторая теорема больцано-коши
- •57. Теорема Вейерштрасса о наибольшем и наименьшем значении функции
- •58. Теорема Вейерштрасса об ограниченности функции
- •59. Равномерная непрерывность функции
- •60. Бесконечно малые функции, основные теоремы о бесконечно малых функциях
- •61. Сравнение бесконечно малых функций
- •62. Основные теоремы о пределах
- •63. Эквивалентные бесконечно малые и их свойства Определение
- •Теорема
- •64.Производная ф-ции.Геометрическая интерпритация
- •65. Производная от сложной ф-ции
- •66. Логарифмическое дифферинцирование
- •67) Дифференциал функции, его связь с производной.
- •68) Инвариантность формы первого дифференциала.
- •69) Производные и дифференциалы высших порядков
- •70) Нарушение инвариантности формы дифференциала порядка выше первого
- •71) Лемма к теореме Ферма и теорема Ферма
- •72) Теорема Роля
- •73) Теорема Лагранжа
- •74) Теорема Коши
- •75) Правило Лопиталя раскрытия неопределенностей
- •76. Исследование функций и построение их графиков
- •78. Неопределенный интеграл, геометрический смысл
- •79. Интегрирование по частям.
- •81.Теорема о комплексных корнях многочлена.
- •82.Простейшие дроби и их интегрирование
- •85. Определённый интеграл, его свойства.
- •86. Теорема о среднем для определенного интеграла.
- •87. Замена переменной в определенном интеграле.
- •88. Вычисление площадей с помощью определенного интеграла.
- •89. Площадь в полярных координатах.
39. Определители н-ого порядка правило крамера
Пусть имеется система уравнений:
Обозначим через Δ определитель матрицы системы и через Δj определитель, который получается из определителя Δ заметой j-го столбца столбцом правых частей системы ( j=1,2,...n).
Теорема 1
Если
определитель матрицы отличен от нуля,
т.е. Δ ≠0, то система имеет единственное
решение, которое находится по формуле:
40. Понятие матрицы
Основные понятия и обозначения. Пусть m и n два произвольных натуральных числа. Матрицей размера m на n (записывается так m x n)называется совокупность mn вещественных (комплексных) чисел или элементов другой структуры (многочлены, функции и т.д.), записанных в виде прямоугольной таблицы, которая состоит из m строк и n столбцов и взятая в круглые или прямоугольные или в двойные прямые скобки. При этом сами числа называются элементами матрицы и каждому элементу ставится в соответствие два числа -номер строки и номер столбца.
Для
обозначения матрицы используются
прописные латинские буквы, при этом
саму матрицу заключают в круглые или
прямоугольные или в двойные прямые
скобки. Элементы
матрицы обозначают
строчными латинскими буквами, снабженными
двумя индексами:
-
элемент матрицы, расположенный
в i-й строке
и j-м столбце
или коротко элемент в позиции (i,j).
В общем виде матрица размера m на n может
быть записана следующим образом
Приведём некоторые обозначения, которыми будем пользоваться в дальнейшем:
-
множество всех матриц размера m на n;
-
матрица A с
элементами
в
позиции (i,j);
-
матрица размера m на n.
Элементы
,
где i=j,
называются диагональными, а элементы
,
где
-
внедиагональными. Совокупность
диагональных элементов
,
где k
= min (m,n),
называется главной диагональю матрицы.
Матрица, все элементы которой равны нулю, называется нулевой матрицей и обозначается символом O.
Заметим,
что для каждого размера
существует
своя нулевая матрица.
Матрица размера n на n называется квадратной матрицей n-го порядка, т.е. число строк равно числу столбцов.
Квадратная матрица называется диагональной, если все ее внедиагональные элементы равны нулю.
Диагональная матрица, у которой все диагональные элементы равны 1, называется единичной матрицей и обозначается символом I или E.
Матрица
размера
называется
матрицей-строкой или вектор-строкой.
Матрица размера
называется
матрицей столбцом или вектор-столбцом.
41. Действия над матрицами
1.Суммой двух матриц одинакового размера A=(aij) и B=(bij) называется матрица C,
у которой (cij)=(aij+bij), и записывают C = A + B.
2.Произведением матрицы A=(aij) на число k называется такая матрица C=(cij), у которой (cij) = (kaij).
Для операции произведение матрицы на число справедливы следующие соотношения:
1.kA=Ak ;
2.
k(A+B)=Ak+Bk ;
3.
;
4.
3.Если A=(aij)mxp, а B=(bij)pxn, то произведением матрицы A на матрицу B назовем матрицу C, каждый элемент которой вычисляют по формуле:
C = AxB = (aij)mxpx(bij)pxn=(as1b1k+as2b2k+...+askbsk)mxn=(cij)mxn
Из определения 12 видно, что каждый элемент матрицы C = AB, расположенный в s -ой строке и k -ом столбце равен сумме произведений элементов s -ой строки матрицы A на элементы k -го столбца матрицы B.
4. Матрица B, у которой все элементы равны элементам матрицы A по абсолютной величине, но имеют противоположные знаки по сравнению со знаками соответствующих элементов матрицы A, называется противоположной матрице A и записывается B=(-1)(aij).
5. Если в некоторой матрице A поменять местами столбцы и строки, то полученная матрица будет называться транспонированной и обозначается Aт.
6. Обратной по отношению к матрице A называется такая матрица, для которой выполняется равенство AA-1 = A-1A = E
7. Если выполняется равенство A = Aт, то такая матрица называется симметрической.
42. Системы линейных уравнений. Теорема Кронекера-Капелли
Системой
линейных алгебраических
уравнений, содержащей m уравнений и n
неизвестных, называется система вида:
где числа aij называются
коэффициентами системы, числа bi—
свободными членами. Подлежат нахождению
числа xn.
Такую систему
удобно записывать в компактной матричной
форме AX=B.
Здесь А
— матрица коэффициентов системы,
называемая основной матрицей;
A
=
;X
=
— вектор-столбец
из неизвестных xj.
B
=
—
вектор-столбец из свободных членов bi.
Произведение матриц А*Х определено, так как в матрице А столбцов столько же, сколько строк в матрице Х (n штук).
Расширенной
матрицей системы называется
матрица A системы,
дополненная столбцом свободных членов
=
Решением
системы называется
n значений неизвестных х1=c1,
x2=c2,
..., xn=cn,
при подстановке которых все уравнения
системы обращаются в верные равенства.
Всякое решение
системы можно
записать в виде матрицы-столбца C
=
