Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вышка_ответы_1семестр.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.25 Mб
Скачать

51 (Функция. Основные понятия. Предел функции.)

Функция (или Функциональная зависимость) – это зависимость переменной y от переменной x. Это такая зависимость, при которой каждому значению переменной x соответствует только одно значение переменной y.

Переменную x называют независимой переменной или аргументом.

Переменную y называют зависимой переменной или функцией от переменной x.

Значение независимой переменной называют абсциссой (горизонтальная плоскость графика).

Соответствующее значение зависимой переменной называется ординатой (вертикальная плоскость графика).

Совокупность значений независимой переменной называется областью определения функции.

Совокупность значений зависимой переменной называют областью значений функции.

График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты – соответствующим значениям функции.

Значения аргумента, при которых функция обращается в нуль, называют нулями функции.

Преде́л фу́нкции (предельное значение функции) в заданной точке, предельной для области определения функции, — такая величина, к которой стремится рассматриваемая функция при стремлении её аргумента к данной точке.

52. (Теоремы о функциях, имеющих предел.)

Теорема 1. (о единственности предела функции). Функция не может иметь более одного предела.

Теорема 2. Если функции f(x) и g(x) имеют пределы в точке , то:

1) предел алгебраической суммы функций равен алгебраической сумме пределов слагаемых, т.е.

2) предел произведения функций равен произведению пределов сомножителей, т.е.

3)предел частного двух функций равен частному от деления предела делимого на предел делителя, если предел делителя не равен нулю, т.е.

Теорема 3 (о пределе сложной функции). Если существует конечный предел

а функция f(u) непрерывна в точке , то

Другими словами, для непрерывных функций символы предела и функции можно поменять местами.

53. (Непрерывность функции, основные определения.)

Рассмотрим функцию f (x), которая отображает множество действительных чисел R на другое подмножество B действительных чисел. Говорят, что функция f (x) является непрерывной в точке a є R, если для любого числа существует число , такое, что для всех , удовлетворяющих соотношению

выполняется неравенство

Определение непрерывности в терминах приращений аргумента и функции

Определение непрерывности можно также сформулировать, используя приращения аргумента и функции. Функция является непрерывной в точке x = a, если справедливо равенство

где

Приведенные определения непрерывности функции эквивалентны на множестве действительных чисел.

Функция является непрерывной на данном интервале, если она непрерывна в каждой точке этого интервала.

54. (Теорема о непрерывности сложной функции.)

Пусть функция j(t) непрерывна в точке t0 и функция f(x) непрерывна в точке х0=j(t0). Тогда функция f(j(t)) непрерывна в точке t0.

Доказательство.

Для доказательства этой теоремы воспользуемся формальным преобразованием двух строчек кванторов. Имеем

Выписывая подчеркнутые кванторы, получим, что

что и говорит о том, что f(j(t)) непрерывна в точке t0.

Обратите внимание на следующие детали:

а) т.к. x=j(t), то |j(t)-j(t0)|<d может быть записано как |x-x0|<d, и f(x) превращается в F(j(t));

б) при определении непрерывности j(t) в точке t0 в первом кванторе стоит буква d. Это необходимо для согласования с квантором в предыдущей строке и взаимного уничтожения . Любая другая буква на этом месте не дала бы верного результата.