- •Билет 1 Определители второго порядка и их свойства
- •Билет 2 Определители третьего порядка и их свойства
- •Билет 3 Векторы. Основные определения
- •Билет 4 Действия над векторами
- •Билет 5 Разложение вектора по базису
- •Билет 7 Линейная зависимость и независимость векторов
- •Свойства линейно зависимых и линейно независимых векторов
- •23 Уравнение прямой в пространстве. Векторное, каноническое уравнение прямой.
- •24 Угол между прямыми в пространстве. Угол между прямой и плоскостью
- •26 Кривые второго порядка. Окружность. Эллипс.
- •27 Гипербола.
- •28 Парабола
- •29 Цилиндрические поверхности
- •30 Конические поверхности
- •31 Поверхности вращения – эллипсоид вращения
- •32 Эллиптический параболоид
- •3 5. Гиперболический параболоид
- •36. Комплексные числа, основные понятия
- •37.Действия над комплексными числами
- •38.Показательная форма комплексного числа. Действия над комплексными числами в показательной форме
- •39. Определители н-ого порядка правило крамера
- •40. Понятие матрицы
- •41. Действия над матрицами
- •43.Однородные системы уравнений, матричный метод решения систем уравнений
- •44. Метод Гаусса
- •45. Множество вещественных чисел и их свойства.
- •46 ( Предел последовательности)
- •47 (Верхние и нижний грани множеств)
- •48 (Частичный предел)
- •50 Второй замечательный предел
- •51 (Функция. Основные понятия. Предел функции.)
- •52. (Теоремы о функциях, имеющих предел.)
- •53. (Непрерывность функции, основные определения.)
- •54. (Теорема о непрерывности сложной функции.)
- •55 (Первая теорема Больцано-Коши)
- •56. Вторая теорема больцано-коши
- •57. Теорема Вейерштрасса о наибольшем и наименьшем значении функции
- •58. Теорема Вейерштрасса об ограниченности функции
- •59. Равномерная непрерывность функции
- •60. Бесконечно малые функции, основные теоремы о бесконечно малых функциях
- •61. Сравнение бесконечно малых функций
- •62. Основные теоремы о пределах
- •63. Эквивалентные бесконечно малые и их свойства Определение
- •Теорема
- •64.Производная ф-ции.Геометрическая интерпритация
- •65. Производная от сложной ф-ции
- •66. Логарифмическое дифферинцирование
- •67) Дифференциал функции, его связь с производной.
- •68) Инвариантность формы первого дифференциала.
- •69) Производные и дифференциалы высших порядков
- •70) Нарушение инвариантности формы дифференциала порядка выше первого
- •71) Лемма к теореме Ферма и теорема Ферма
- •72) Теорема Роля
- •73) Теорема Лагранжа
- •74) Теорема Коши
- •75) Правило Лопиталя раскрытия неопределенностей
- •76. Исследование функций и построение их графиков
- •78. Неопределенный интеграл, геометрический смысл
- •79. Интегрирование по частям.
- •81.Теорема о комплексных корнях многочлена.
- •82.Простейшие дроби и их интегрирование
- •85. Определённый интеграл, его свойства.
- •86. Теорема о среднем для определенного интеграла.
- •87. Замена переменной в определенном интеграле.
- •88. Вычисление площадей с помощью определенного интеграла.
- •89. Площадь в полярных координатах.
48 (Частичный предел)
Частичным пределом последовательности называется предел какой-либо ее подпоследовательности, если существует хотя бы одна подпоследовательность имеющая предел. Очевидно, что только определенная точка множества элементов подпоследовательности может быть ее частичным пределом, а также обратное (для доказательства будем брать n = 1/n и, выбирая в каждой -окрестности предельной точки член последовательности, построим таким образом сходящуюся к этой точке подпоследовательность)
Нижним пределом последовательности
(обозначается
или
)
называется наименьший элемент множества частичных
пределов последовательности, а верхним
пределом (
или
)
— наибольший элемент.
Не во всяком множестве существуют
наибольший или наименьший элемент;
примером может служить интервал
.
Однако утверждается, что у ограниченной
последовательности верхний и нижний
пределы существуют.
Докажем это утверждение для верхнего
предела. По теореме
Больцано — Вейерштрасса множество
частичных пределов ограниченной
последовательности не пусто.
Пусть
— верхняя
грань множества
частичных
пределов. Тогда заметим, что
,
а это означает, что в любой окрестности
точки
находится
бесконечно много членов последовательности.
Поскольку утверждение верно для любого
,
мы можем сказать, что в любой окрестности
точки
содержится
бесконечно много членов последовательности
(так как в любой окрестности мы можем
найти точку
).
Значит,
по
определению является предельной точкой
последовательности, а стало быть, и её
частичным пределом, что и требовалось
доказать. Аналогично доказывается
случай нижнего предела.
Последовательность
сходится к
тогда
и только тогда, когда
,
так как получается, что
—
единственная предельная точка множества
элементов последовательности
50 Второй замечательный предел
или
Доказательство второго замечательного предела:
Доказательство для натуральных значений x
Докажем
вначале теорему для случая
последовательности
По
формуле бинома Ньютона:
Полагая
,
получим:
(1)
Из
данного равенства (1) следует, что с
увеличением n число положительных
слагаемых в правой части увеличивается.
Кроме того, при увеличении n число
убывает,
поэтому величины
возрастают.
Поэтому последовательность
— возрастающая,
при этом
(2).
Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство
Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2:
.
Сумму в скобке найдём по формуле суммы членов геометрической прогрессии:
.
Поэтому
(3).
Итак,
последовательность ограничена сверху,
при этом
выполняются
неравенства (2) и (3):
.
Следовательно,
на основании теоремы Вейерштрасса
(критерий сходимости последовательности)
последовательность
монотонно
возрастает и ограниченна, значит имеет
предел, обозначаемый буквой e.
Т.е.
Зная,
что второй замечательный предел верен
для натуральных значений x, докажем
второй замечательный предел для
вещественных x, то есть докажем, что
.
Рассмотрим два случая:
1.
Пусть
.
Каждое значение x заключено между двумя
положительными целыми числами:
,
где
—
это целая часть x.
Отсюда
следует:
,
поэтому
.
Если
,
то
.
Поэтому, согласно пределу
,
имеем:
.
По
признаку (о пределе промежуточной
функции) существования пределов
.
2.
Пусть
.
Сделаем подстановку − x = t,
тогда
.
Из
двух этих случаев вытекает, что
для
вещественного x.
