- •4. Механическое оборудование печей
- •Приборы защиты и измерения, автоматический регулятор
- •§ 3. Выплавка стали в основных дуговых электропечах
- •§ 4. Выплавка стали в кислых дуговых электропечах
- •§5. Электродуговые печи постоянного тока
- •§6. Работа электродуговых печей и экология
- •§1. Способы разливки стали. Разливка сифоном и сверху
- •§2. Кристаллизация и строение стальных слитков
- •§ 3. Химическая неоднородность слитков
- •§4. Оборудование для разливки стали
- •§ 5. Температура и скорость разливки
- •§ 6. Особенности разливки спокойной стали
- •§ 7. Особенности разливки кипящей стали
- •§8. Дефекты стальных слитков
- •§1. Общая характеристика непрерывной разливки
- •§ 3. Технология разливки и качество слитка
- •§ 4. Производительность унрс
- •Глава 7. Современные технологии получения стали высокого качества. Внепечная обработка стали
- •§1. Общие условия
- •§ 2. Технологические основы внепечного рафинирования
- •§ 3. Современные способы вакуумирования
- •§4. Обработка металла вакуумом и кислородом
- •§5. Метод продувки инертными газами
- •§ 6. Аргонокислородная продувка
- •§ 7. Внепечная обработка и производство высокохромистых сталей и сплавов
- •§8. Обработка стали шлаками
- •§ 10. Предотвращение вторичного окисления
- •§11. Методы отделения шлака от металла ("отсечки" шлака)
- •§ 12. Комбинированные (комплексные) методы внепечной обработки
- •§ 13. Внвпечная обработка стали
- •§ 14. Обработка стали в процессе кристаллизации
- •§ 15. Внепбчная обработка стали и проблемы экологии
- •Глава 8. Комплексные технологии внепечной обработки чугуна и стали
- •§ 1. Внедомвнная десульфурация чугуна
- •§ 2. Внедоменная дефосфорация чугуна
- •§ 3. Проведение обвскремнивания и дефосфорации чугуна
- •§ 4. Совместное проведение операций десульфурации и двфосфорации
- •§ 5. Комплексные технологии внепвчной обработки чугуна и стали
- •§ 1. Конструкции сталеплавильных агрегатов непрерывного действия (санд)
- •§2. Переплав металлолома
- •Глава 10. Переплавные процессы
- •§1. Вакуумный индукционный переплав
- •§2. Вакуумный дуговой переплав
- •§ 3. Электрошлаковый переплав
- •§ 3. Электрошлаковый переплав
- •§ 4. Электронно-лучевой и плазменно-дуговой переплавы
- •§ 5. Перспективы развития переплавных процессов
- •§ 1. Восстановительные ферросплавные печи
- •§ 2. Рафинировочные ферросплавные печи
- •§3. Загрузка шихты в ферросплавные печи
- •Глава 3. Производство ферросилиция
- •Глава 5. Производство силикомарганца
- •Глава 6. Производство углеродистого феррохрома
- •Глава 9. Основы технологии получения феррованадия
- •Подготовка руд к доменной плавке — их обогащение с получением концентрата и агломерация или окомкование концентрата.
- •Извлечение ванадия (в виде оксида v2Os) из ванадийсодержащего конвертерного шлака гидрометаллургическим способом, для чего:
- •Глава 1. Народнохозяйственное значение цветных металлов
- •Глава 2. Металлургия меди
- •§1. Свойства меди и бе применение
- •§ 2. Сырье для получения меди
- •§ 3. Пирометаллургический способ производства меди
- •Глава 3. Металлургия никеля
- •§1. Свойства никеля и его применение
- •§2. Сырье для получения никеля
- •§3. Получение никеля из окисленных руд
- •§4. Получение никеля
- •§1. Свойства алюминия и вго применение
- •§2. Сырые материалы
- •§ 3. Производство глинозема
- •1. Способ Байера
- •I фракция I
- •I j | Выпаривание
- •§ 4. Электролитическое получение алюминия
- •§ 5. Рафинирование алюминия
- •Глава 5. Получение других цветных металлов
- •§ 2. Производство магния
- •§ 3. Производство титана
- •§ 1. Правовые аспекты проблем охраны природы
- •Раздел X включает перечень задач, стоящих перед экологическим контролем.
- •§ 2. Основные направления охраны окружающей среды и рационального природопользования
- •§ 3. Охрана природы и металлургия.
- •§ 4. Защита воздушного бассейна
- •§ 5. Охрана водного бассейна
- •§ 6. Утилизация шлаков
- •§ 7. Использование шламов и выбросов
- •§ 9. Использовании вторичных энергоресурсов
- •§ 10. Использование металлургических агрегатов для переработки бытовых отходов
- •153008, Г. Иваново, ул. Типографская, 6.
§ 2. Технологические основы внепечного рафинирования
Обработка металла вакуумом влияет, как известно, на протекание тех реакций и процессов, в которых принимает участие газовая фаза.
Газовая фаза образуется, в частности, при протекании реакции окисления углерода (образование СО), при протекании процессов выделения растворенных в металле водорода и азота, а также процессов испарения примесей цветных металлов.
В стали практически всегда содержится определенное количество углерода. Равновесие реакции [С] + [О] = СОгаз, К = рсо/а а при обработке вакуумом сдвигается впра-
во, кислород реагирует с углеродом, образуя окись углерода.
В тех случаях, когда кислород в металле находится в составе оксидных неметаллических включений, снижение давления над расплавом приводит в результате взаимодействия с углеродом к частичному или полному разрушению этих включений:
600
601
ШеО) + [С] = Me + СОгаз; К =
e(AfeO)e[C]
а
о а FCO We
(МеО) К ■ а
I *-1
Более слабые включения, такие например, как МпО или Сг203, восстанавливаются почти нацело; для восстановления более прочных включений, таких, например, как А12Оэ или ТЮг, требуется очень глубокий вакуум. Снижение концентрации кислорода в металле ("окисленности" металла) при обработке вакуумом за счет реакции окислениия углерода получило название "углеродное раскисление".
Обработка металла вакуумом влияет и на содержание в стали водорода и азота. Выше было сказано, что содержание водорода в металле определяется при прочих равных условиях давлением водорода в газовой фазе [Н] = Ю> р . При
"2
снижении давления над расплавом равновесие реакции 2[Н] *=± Н2газ сдвигается вправо. Водород в жидкой стали отличается большой подвижностью, коэффициент диффузии его достаточно велик (£>„ = 1,2*1,5 ■ Ю-3 см/с), и в результате вакуумирования значительная часть содержащегося в металле водорода быстро удаляется из металла.
Равновесие реакции 2[N] 5=± N2ra3 при снижении давления также сдвигается вправо, однако азот в металле менее подвижен, коэффициент диффузии его в жидком железе на порядок меньше, чем водорода [D = (1*4) • 10~4 см/с], в
результате интенсивность очищения расплава от азота под вакуумом значительно ниже, чем от водорода. Требуются более глубокий вакуум и продолжительная выдержка, чтобы достигнуть заметного очищения металла от азота.
Процесс очищения металла от водорода и азота под вакуумом ускоряется одновременно протекающим процессом выделения пузырьков окиси углерода. Эти пузырьки интенсивно перемешивают металл и сами являются маленькими "вакуумны ми камерами", так как в пузырьке, состоящем только из СО,
парциальные давления водорода и азота равны нулю (р ■ О
н2
и р =0). Таким образом, при обработке металла вакуумом
N2
602
в нем уменьшается содержание растворенных кислорода, водорода, азота и содержание оксидных неметаллических включений; в результате выделения большого количества газовых пузырьков металл перемешивается, становится однородным, происходит "гомогенизация" расплава.
Кроме того, в тех случаях, когда металл содержит в повышенных концентрациях примеси цветных металлов (свинца, сурьмы, олова, цинка и др.), заметная часть их при обработке вакуумом испаряется.
Необходимо иметь в виду, что при обработке вакуумом испаряется также и железо и полезные примеси (очень интенсивно, например, испаряется марганец). Однако эти потери становятся ощутимыми лишь при очень глубоком вакууме и очень длительной выдержке.
Продувка металла инертными газами в известной мере влияет так же, как обработка вакуумом. При продувке инертными газами массу металла пронизывают тысячи пузырьков инертного газа (обычно аргона). Каждый пузырек представляет собой маленькую "вакуумную камеру", так как парциальные давления водорода и азота в таком пузырьке равны нулю. При продувке инертным газом происходит иненсивное перемешивание металла, усреднение его состава; в тех случаях, когда на поверхности металла наведен хороший шлак, перемешивание облегчает протекание процесса ассимиляции таким шлаком неметаллических включений; если этот шлак имеет высокую основность (а также малую окисленность) происходит и десульфурация металла. Когда хотят получить сталь с особо низким содержанием углерода (например, особо качественную нержавеющую сталь), кислород, подаваемый для продувки ванны, разбавляют инертным газом, при этом равновесие реакции 02 + 2[С] = 2СОгаз сдвигается вправо, так как в газовой фазе в составе продуктов реакции, кроме оксидов углерода, будет находиться и инертный газ, и парциальное давление рсо уменьшится. Масса пузырьков инертного газа сама облегчает процессы газовыделения, так как эти пузырьки являются готовыми полостями с развитой поверхностью раздела для образования новой фазы.
Необходимо иметь в виду, что продувка инертным газом сопровождается снижением температуры металла (газ нагревается и интенсивно уносит тепло), поэтому ее часто используют для регулирования температуры металла в ковше.
603
Технически операция продувки больших масс металла инертными газами в ковше проще и дешевле, чем обработка вакуумом, поэтому там, где это возможно, продолжительная по времени продувка инертными газами, проводимая через пористые пробки в днище ковша или через полый стопор, заменяет обработку вакуумом. Во многих случаях продувку металла инертным газом проводят одновременно с обработкой вакуумом, так как вызываемое продувкой энергичное перемешивание металла ускоряет процессы вакуумирования, делает вакуумирование более эффективным. В качестве инертного газа чаще всего используют аргон. Когда это возможно, при производстве стали простых марок, невысоких температурах, аргон заменяют более дешевыми газами (азотом или даже паром).
Таким образом при продувке металла инертными газами достигают: 1)энергичного перемешивания расплава, облегчения протекания процессов удаления в шлак нежелательных примесей; 2) усреднения состава металла; 3) уменьшения содержания газов в металле; 4) облегчения условий протекания реакции окисления углерода; 5) снижения температуры металла.
Перемешивание металла со специально приготовленным ("синтетическим") шлаком позволяет интенсифицировать переход в шлак тех вредных примесей, которые удаляются в шлаковую фазу: серы, фосфора, кислорода (в виде оксидных неметаллических включений). В тех случаях, когда основная роль в удалении примеси принадлежит шлаковой фазе, скорость процесса пропорциональна величине площади межфазной поверхности. Обычно способ обработки стали синтетическим шлаком используют прежде всего для удаления серы, поэтому основой искусственно приготовляемого ("синтетического") шлака является СаО; для снижения температуры плавления в состав шлаковой смеси вводят А12Оэ или другие добавки. Поскольку в таком шлаке практически нет оксидов железа, он является одновременно хорошим раскислителем. Если ставится задача очистки металла от неметаллических включений определенного состава, то соответственно подбирают состав синтетического шлака. Во всех случаях задача заключается, во-первых, в получении шлака нужного состава и, во-вторых, в разработке способа получения максимальной поверхности контакта шлаковой и металлической фаз.
Продувка металла порошкообразными материалами (или вдувание в металл порошкообразных материалов) также имеет целью обеспечить максимальный контакт вдуваемых твердых реагентов с металлом. Вместе с тем положительная сторона метода состоит в том, что реагент в металл вдувается струей газа-носителя, который сам оказывает определенное воздействие на металл. Газом-носителем может быть и окислитель (например, кислород или воздух), и восстановитель (например, природный газ), и нейтральный газ (например, аргон). Для удаления фосфора в струе кислорода в металл вдувают твердую смесь, состоящую из извести, железной руды и плавикового шпата, для удаления серы в металл вдувают в струе аргона смесь извести и плавикового шпата. Плавиковый шпат вводится в состав смесей для повышения жидкотекучести шлака. Этим способом можно вдувать в металл (в струе нейтрального или восстановительного газа) такие сильнодействующие реагенты, которые из-за больших энергий взаимодействия и соответствующего пироэффекта обычными способами вводить в металл нельзя (кальций, магний) или из-за их вредного действия на здоровье опасно (свинец, селен, теллур).
Ускоренная или направленная кристаллизация металла имеет целью улучшить структуру слитка, ликвидировать или уменьшить ликвацию, центральную рыхлость и пористость и тому подобные пороки. Скорость кристаллизации слитка пропорциональна разности температур у фронта кристаллизации и на поверхности слитка. Чем больше масса слитка, тем медленнее он кристаллизуется и тем сильнее в обычных условиях развиваются ликвационные и другие неприятные явления. Искусственное охлаждение слитков (применяемое, например, при непрерывной разливке стали) ускоряет процесс кристаллизации и положительно влияет на качество слитка. Регулируя время пребывания металла в жидком состоянии в изложнице или кристаллизаторе и интенсивность охлаждения металла, можно обеспечить получение такого слитка, у которого вообще не будет центральной менее плотной и более обогащенной ликватами зоны беспорядочно ориентированных кристаллов.
Обычно для интенсивного охлаждения поверхности слитка (непосредственно или через стенки кристаллизатора) пользуются водой.
604
605
Э
ти
общие положения на практике реализуют
в результате использования того или
иного способа и агрегата из большого
многообразия их.
