Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpori_na_ekonometriyu.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.83 Mб
Скачать

19. Методи пом’якшення гетероскедастичності.

Гетероскедастичність призводить до неефективності оцінок, незважаючи на їх незміщеність. Це може призвести до необґрунтованих висновків щодо якості моделі. Тому при встановленні гетероскедастичності виникає необхідність перетворення моделі з метою усунення даного недоліку. Вид перетворення залежить від того, відомі чи ні дисперсії відхилень. Метод зважених найменших квадратів (ВНК)

Даний метод застосовується при відомих для кожного спостереження значеннях . У цьому випадку можна усунути гетероскедастичність, розділивши кожне значення, що спостерігається на відповідне йому значення дисперсії. У цьому суть методу зважених найменших квадратів.

Д ля простоти викладу опишемо ВНК на прикладі парної регресії: Розділимо обидві частини (7.5) на , одержимо: (6) Поклавши рівним одержимо рівняння регресії без вільного члена, але з додаткової пояснюючою змінної і з “перетвореним” відхиленням :

Для застосування ВНК необхідно знати фактичні значення дисперсій відхилень. На практиці такі значення відомі вкрай рідко. Отже, щоб застосувати ВНК, необхідно зробити припущення про значення .

Наприклад, можна припустити, що дисперсії відхилень пропорційні значенням (рис. 9) чи значенням (рис. 10).

20. Методи усунення автокореляції. Авторегресійне перетворення.

Серед основних методів усунення автокореляції можна виділити:

1. Правильну специфікацію моделі (залучення значущих факторів або зміна форми залежності). Основною причиною наявності випадкової величини в узагальненій кореляційно-регресійній моделі є неможливість урахувати всі значущі фактори і взаємозв'язки,що зумовлюють певне значення результуючої змінної. Потрібно спробувати ідентифікувати факторну ознаку, яку не враховано в КРМ і врахувати її. Також можна спробувати змінити форму залежності( наприклад, лінійну на нелінійну).

2. Використання AR(1)-моделі (авторегресійної моделі Маркова 1-го порядку). Якщо віс доступні процедури зміни специфікації моделі вичерпані,а автокореляція наявна,то можна припустити, що вона обумовлена внутрішніми властивостями певних значень випадкових відхилень . У цьому разі можна скористатися авто регресійним перетворенням. У лінійній кореляційно-регресійній моделі або в моделях, що зводяться до лінійної, найдоцільнішим і простим перетворенням є авто регресійна модель Маркова першого порядку AR(1).

21. Методи усунення мультиколінеарності.

Розглянемо існуючі методи усунення мультиколінеарності:

1. Виключення змінної(их) з моделі. Цей метод полягає в тому, що високо корельовано пояснюючі змінні видаляються з регресії, та вона заново оцінюється. Відбір змінних, що підлягають виключенню, виконується за допомогою коефіцієнта кореляції. Для цього розраховується оцінка значимості коефіцієнтів парної кореляції rij між пояснюючими змінними xi та xj. Досвід свідчить, що якщо |rij|>0.85, то одну з змінних можна виключити. Але яку змінну видалити з аналізу, вирішують виходячи з економічних міркувань.

2. Покрокова регресія. В аналіз послідовно додається по одній пояснюючій змінній. На кожному кроці перевіряється значимість коефіцієнтів регресії та оцінюється мультиколінеарність змінних. Якщо оцінка коефіцієнта отримується не значимою, то змінна виключається та розглядають іншу пояснюючу змінну. Якщо оцінка коефіцієнта кореляції значима, а мулько лінеарність відсутня, то ця змінна залишається і в аналіз включають наступну змінну. Таким чином, поступово визначають всі змінні, що складають регресію без порушення передумови про відсутність мультиколінеарності.

3. Зміна специфікації моделі: або змінюється форма моделі, або додаються пояснюючі змінні, не враховані в первісній моделі, але істотно впливають на залежну змінну.

4. Використання попередньої інформації про деякі параметри. Зазвичай на основі раніше проведеного регресійного аналізу або в результаті економічних досліджень вже є більш або менш точне уявлення про величину або співвідношення двох або декількох коефіцієнтів регресії. Ця попередня або не вибіркова інформація може бути використана дослідником при побудові регресії. У зв’язку з тим.., що частина оцінок, отримана на основі не вибіркових даних, вже має достатньо чітку інтерпретацію. Це полегшує шлях знаходження взаємних впливів змін різних змінних.

5. Перетворення змінних. У ряді випадків мінімізувати або взагалі усунути проблему мультиколінеарності можна за допомогою перетворення змінних.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]