- •1. Ancova - модель з однією кількісною та однією якісною змінною, яка має дві альтернативи.
- •2. Ancova - модель з однією кількісною та однією якісною змінною, яка має три альтернативи.
- •3. Авторегресійні моделі. Модель адаптивних очікувань.
- •4. Авторегресійні моделі. Модель часткових пристосувань.
- •5. Визначення коефіцієнта детермінації для багатофакторної лінійної регресії, оцінка його статистичної значущості.
- •6. Визначення коефіцієнта детермінації для парної лінійної регресії.
- •7. Використання Dummy-змінних у сезонному аналізі.
- •8. Виявлення автокореляції за допомогою графічного методу, методу рядів.
- •9. Виявлення гетероскедастичності (графічний аналіз залишків, тест рангової кореляції Спірмена).
- •Визначається коефіцієнт рангової кореляції: (1)
- •10. Дайте означення дисперсії вв.
- •11. Дайте означення закону розподілу дискретної вв. Яким чином можна його задати?
- •12. Дайте означення коваріації.
- •13. Дайте означення середнього квадратичного відхилення вв.
- •14. Дайте означення та перелічите основні властивості математичного сподівання вв.
- •15. Дайте означення функції розподілу вв.
- •16. Дайте означення функції щільності ймовірності неперервної вв.
- •17. Зв’язок між коефіцієнтом кореляції та коефіцієнтом детермінації.
- •18. Зв’язок між коефіцієнтом кореляції та кутовим коефіцієнтом b1.
- •19. Методи пом’якшення гетероскедастичності.
- •20. Методи усунення автокореляції. Авторегресійне перетворення.
- •21. Методи усунення мультиколінеарності.
- •22. Моделі ancova
- •23. Моделі anova.
- •24. Наведіть формули для розрахунків коефіцієнтів емпіричного парного лінійного рівняння регресії за мнк.
- •25. Нелінійні моделі та їх лінеаризація. Приклади використання в економіці.
- •26. Об'єкт, предмет та мета економетрії. Основне завдання економетричних досліджень.
- •27. Опишіть процес перевірки адекватності моделі за f-критерієм Фішера.
- •28. Опишіть процес перевірки статистичної значущості коефіцієнта кореляції за допомогою t-теста Стьюдента
- •29. Оцінка дисперсії залишків та дисперсій коефіцієнтів парної регресії.
- •30. Оцінка моделей з лаговими змінними. Метод послідовного збільшення кількості лагів.
- •31. Оцінка моделей з лаговими змінними. Перетворення Койка.
- •32. Оцінка параметрів лінійного рівняння багатофакторної регресії за допомогою мнк.
- •33. Оцінка параметрів парної лінійної регресії за допомогою мнк.
- •34. Перевірка статистичної значущості коефіцієнтів b0 та b1 лінійної регресії за допомогою t-теста Стьюдента.
- •35. Передумови мнк, теорема Гаусса -Маркова.
- •36. Поняття гетероскедастичності та її наслідки.
- •37. Поняття мультиколінеарності та її наслідки.
- •38. Порівняння двох регресійних моделей. Тест Чоу.
- •39. Природа Dummy-змінних.
- •40. Прогнозування за моделлю парної лінійної регресії.
- •41. Суть, причини та наслідки автокореляції.
- •42. Сформулюйте означення багатофакторної лінійної регресії.
- •43. Сформулюйте означення парної лінійної регресії.
- •44. Сформулюйте означення та наведіть формули для розрахунків ssr, sse, sst. Ступені вільності величин ssr, sse, sst.
- •45. Сформулюйте означення функції регресії.
- •46. Теоретичне, емпіричне рівняння багатофакторної регресії.
- •47. Теоретичне, емпіричне рівняння парної лінійної регресії.
- •48. Тестування наявності автокореляції залишків за критерієм Дарбіна-Уотсона.
- •49. Тестування наявності мультиколінеарності. Алгоритм Фаррара-Глобера.
- •50. У чому суть методу найменших квадратів (мнк)?
- •51. Часові ряди. Лагові змінні в економічних моделях.
- •52. Що таке випадкова величина (вв)? Які види вв Вам відомі? Наведіть приклади дискретних та неперервних вв з економіки.
- •53. Що таке генеральна сукупність, вибірка?
- •54. Як визначається і для чого використовується коефіцієнт кореляції?
- •55. Як визначаються інтервали довіри для параметрів , теоретичної лінійної регресії?
- •56. Як за результатами вибірки визначаються: вибіркове середнє, вибіркова дисперсія, вибіркове середнє квадратичне відхилення?
- •57. Як за результатами вибірки визначаються: вибіркові коефіцієнти коваріації та кореляції?
7. Використання Dummy-змінних у сезонному аналізі.
Однією із сфер застосування бінарних змінних є аналіз сезонних коливань. За допомогою цих змінних можна усунути сезонні коливання з метою визначення головних тенденцій розвитку певного економічного процесу.
Приклад 9.2. Нехай y — обсяг споживання певного продукту, який залежить від пори року. Для виявлення сезонності можна ввести
бінарні змінні d1, d2, d3:
d1 — 1, якщо місяць року зимовий, d1 — 0 — в інших випадках;
d2 — 1, якщо місяць року весняний, d2 — 0 — в інших випадках;
d3 — 1, якщо місяць року літній, d3 — 0 — в інших випадках.
На базі відповідних статистичних даних методом найменших квадратів можна оцінити параметри a3 лінійного регресійного рівняння
y — a0 + a d1 + a2 d2 + a3d3 + u.
Отримані результати мають такий зміст: коефіцієнт a0 визначає середньомісячний обсяг споживання досліджуваного продукту; суми коефіцієнтів a0 + a0 + a0 + a3 — обсяг споживання відповідно взимку, навесні та влітку. Отже, параметри a3 вказують на сезонні відхилення в обсягах споживання продукту відносно осінніх місяців. Перевірка статистичної значущості кожного з коефіцієнтів регресії виконується за допомогою традиційного t-тесту. Прийняття гіпотези про рівність нулю кожного з параметрів означає несуттєву різницю між споживанням в осінній період і споживанням в інший сезон. Комплексна гіпотеза a — a2 — a3 — 0 перевіряється за допомогою Р-тесту. Зокрема, якщо приймається припущення a — то це означає, що споживання взимку та весною не відрізняються між собою і т. ін.
8. Виявлення автокореляції за допомогою графічного методу, методу рядів.
Графічний метод
Існує
кілька варіантів графічного визначення
автокореляції. Відповідно до одному з
них, на графіку відбиваються відхилення
,
що відповідають моментам
.
Це так називані послідовно-часові
графіки. На рис.1 наведені приклади
послідовно-часових графіків.
Рис. 1
У випадку, якщо на графіку є визначені зв'язки між відхиленнями (рис. 1, а) – г), то автокореляція має місце. Відсутність залежності свідчить про відсутність автокореляції (рис. 1, д).
Метод рядів
Послідовно
визначаються знаки відхилень
,
.
Наприклад,
,
тобто 5 «-», 7 «+», 3 «-», 4 «+», 1 «-» при 20
спостереженнях.
Візуальний розподіл знаків свідчить про невипадковий характер зв'язків між відхиленнями.
9. Виявлення гетероскедастичності (графічний аналіз залишків, тест рангової кореляції Спірмена).
Графічний аналіз залишків
При
використанні методу графічного аналізу
залишків по осі абсцис відкладаються
значення (
)
пояснюючої змінної
(або лінійної комбінації пояснюючих
змінних
),
а по осі ординат або відхилення
,
або їх квадрати
,
.
Приклади цих графіків наведені на рис. 4.– 8.
На рис. 4 усі відхилення знаходяться усередині смуги постійної ширини, що паралельна осі абсцис. Це говорить про незалежність дисперсій від значень змінної і їхній сталості, тобто в цьому випадку виконується умова гомоскедастичності. Ситуації, що представлені на рис. 5 – 8 відбивають велику ймовірність наявності гетероскедастичності.Тест рангової кореляції Спірмена.Алгоритм тесту рангової кореляції Спірмена:
