- •1. Ancova - модель з однією кількісною та однією якісною змінною, яка має дві альтернативи.
- •2. Ancova - модель з однією кількісною та однією якісною змінною, яка має три альтернативи.
- •3. Авторегресійні моделі. Модель адаптивних очікувань.
- •4. Авторегресійні моделі. Модель часткових пристосувань.
- •5. Визначення коефіцієнта детермінації для багатофакторної лінійної регресії, оцінка його статистичної значущості.
- •6. Визначення коефіцієнта детермінації для парної лінійної регресії.
- •7. Використання Dummy-змінних у сезонному аналізі.
- •8. Виявлення автокореляції за допомогою графічного методу, методу рядів.
- •9. Виявлення гетероскедастичності (графічний аналіз залишків, тест рангової кореляції Спірмена).
- •Визначається коефіцієнт рангової кореляції: (1)
- •10. Дайте означення дисперсії вв.
- •11. Дайте означення закону розподілу дискретної вв. Яким чином можна його задати?
- •12. Дайте означення коваріації.
- •13. Дайте означення середнього квадратичного відхилення вв.
- •14. Дайте означення та перелічите основні властивості математичного сподівання вв.
- •15. Дайте означення функції розподілу вв.
- •16. Дайте означення функції щільності ймовірності неперервної вв.
- •17. Зв’язок між коефіцієнтом кореляції та коефіцієнтом детермінації.
- •18. Зв’язок між коефіцієнтом кореляції та кутовим коефіцієнтом b1.
- •19. Методи пом’якшення гетероскедастичності.
- •20. Методи усунення автокореляції. Авторегресійне перетворення.
- •21. Методи усунення мультиколінеарності.
- •22. Моделі ancova
- •23. Моделі anova.
- •24. Наведіть формули для розрахунків коефіцієнтів емпіричного парного лінійного рівняння регресії за мнк.
- •25. Нелінійні моделі та їх лінеаризація. Приклади використання в економіці.
- •26. Об'єкт, предмет та мета економетрії. Основне завдання економетричних досліджень.
- •27. Опишіть процес перевірки адекватності моделі за f-критерієм Фішера.
- •28. Опишіть процес перевірки статистичної значущості коефіцієнта кореляції за допомогою t-теста Стьюдента
- •29. Оцінка дисперсії залишків та дисперсій коефіцієнтів парної регресії.
- •30. Оцінка моделей з лаговими змінними. Метод послідовного збільшення кількості лагів.
- •31. Оцінка моделей з лаговими змінними. Перетворення Койка.
- •32. Оцінка параметрів лінійного рівняння багатофакторної регресії за допомогою мнк.
- •33. Оцінка параметрів парної лінійної регресії за допомогою мнк.
- •34. Перевірка статистичної значущості коефіцієнтів b0 та b1 лінійної регресії за допомогою t-теста Стьюдента.
- •35. Передумови мнк, теорема Гаусса -Маркова.
- •36. Поняття гетероскедастичності та її наслідки.
- •37. Поняття мультиколінеарності та її наслідки.
- •38. Порівняння двох регресійних моделей. Тест Чоу.
- •39. Природа Dummy-змінних.
- •40. Прогнозування за моделлю парної лінійної регресії.
- •41. Суть, причини та наслідки автокореляції.
- •42. Сформулюйте означення багатофакторної лінійної регресії.
- •43. Сформулюйте означення парної лінійної регресії.
- •44. Сформулюйте означення та наведіть формули для розрахунків ssr, sse, sst. Ступені вільності величин ssr, sse, sst.
- •45. Сформулюйте означення функції регресії.
- •46. Теоретичне, емпіричне рівняння багатофакторної регресії.
- •47. Теоретичне, емпіричне рівняння парної лінійної регресії.
- •48. Тестування наявності автокореляції залишків за критерієм Дарбіна-Уотсона.
- •49. Тестування наявності мультиколінеарності. Алгоритм Фаррара-Глобера.
- •50. У чому суть методу найменших квадратів (мнк)?
- •51. Часові ряди. Лагові змінні в економічних моделях.
- •52. Що таке випадкова величина (вв)? Які види вв Вам відомі? Наведіть приклади дискретних та неперервних вв з економіки.
- •53. Що таке генеральна сукупність, вибірка?
- •54. Як визначається і для чого використовується коефіцієнт кореляції?
- •55. Як визначаються інтервали довіри для параметрів , теоретичної лінійної регресії?
- •56. Як за результатами вибірки визначаються: вибіркове середнє, вибіркова дисперсія, вибіркове середнє квадратичне відхилення?
- •57. Як за результатами вибірки визначаються: вибіркові коефіцієнти коваріації та кореляції?
42. Сформулюйте означення багатофакторної лінійної регресії.
На будь-який економічний показник найчастіше впливає не один, а декілька факторів. У цьому випадку замість парної регресії розглядається багатофакторна регресія:
(1)
Рівняння багатофакторної регресії може бути представлене у вигляді:
(2)
де
– вектор незалежних
(пояснюючих)
змінних;
– вектор
невідомих параметрів;
– випадкове
відхилення;
– залежна (пояснювана) змінна.
Розглянемо найбільш просту з моделей багатофакторної регресії – модель багатофакторної лінійної регресії.
Теоретичне лінійне рівняння багатофакторної регресії має вигляд:
(3)
Фактичні значення залежної змінної знаходяться за формулою:
(4)
43. Сформулюйте означення парної лінійної регресії.
Функціональна залежність умовного математичного сподівання від називається функцією регресії на :
(1)
де – значення ВВ в -му спостереженні, .
Парна лінійна регресія являє собою лінійну функцію між умовним математичним сподіванням залежної змінної і однією незалежною змінною :
. (2)
Співвідношення (2) називається теоретичним лінійним рівнянням регресії. Для відображення того факту, що кожне фактичне значення залежної змінної ( ) відхиляється від відповідного умовного математичного сподівання ( ), необхідно ввести в співвідношення (2) випадковий доданок :
, (3)
де , – теоретичні параметри (теоретичні коефіцієнти) регресії;
– випадкові відхилення.
Співвідношення (3) називається теоретичною лінійною регресійною моделлю. За вибіркою можна побудувати емпіричне рівняння регресії:
, (4)
де – оцінка умовного математичного сподівання ;
, – оцінки невідомих параметрів (емпіричні коефіцієнти регресії).
Фактичні значення залежної змінної ( ) розраховуються за формулою:
, (5)
де – оцінка теоретичного випадкового відхилення .
44. Сформулюйте означення та наведіть формули для розрахунків ssr, sse, sst. Ступені вільності величин ssr, sse, sst.
SST – загальна сума квадратів яку прийнято позначати SST (sum square total)
SSE – сума квадратів помилок сума квадратів помилок, яка позначаєтьсяSSE (sum square error)
SSR – сума квадратів, що пояснюється регресією та позначаєтьсяSSR (sum square regression)
;
;
.
Розглянемо тотожність, яка пов'язує загальну суму квадратів із сумою квадратів помилок та із сумою квадратів, що пояснюють регресію:
ST = SSE + SSR.
Кожна сума квадратів пов'язана з числом, яке називається її ступенем вільності, це число показує, скільки незалежних елементів інформації, які утворюються з елементів (у1,...,уn) потрібно для розрахунку даної суми квадратів.
Розглянемо, скільки ступенів вільності має кожна, вивчена нами сума квадратів.
Для утворення SST потрібно(n -1) незалежних чисел, тому що з чисел
{(y1 -
),
(y2 -),
... , (yn -)}незалежні
тільки (n -1)
завдяки властивості:
Сума квадратів, що пояснює регресію - SSR має тільки єдину незалежну одиницю інформації, яка утворюється з у1,...,уn, а саме b1. Доведемо це.
Запишемо відхилення, що пояснює регресію, у вигляді:
Візьмемо суми з обох боків рівняння і піднесемо їх до квадрату:
Таким чином, дійсно SSR можна утворити, використовуючи лише єдину незалежну одиницю інформації b1.
Сума квадратів помилок SSE має (n - 2) ступеня вільності:
SST = SSE + SSR
У разі простої лінійної регресії: n-1 = n-2 + 1
Ця сума базується на кількості ступенів вільності, яка дорівнює різниці між кількістю спостережень і кількістю параметрів, що оцінюються. У разі простої лінійної регресії оцінюються два параметри b0таb1. Якщо позначити кількість спостережень черезn, то дляSSE маємо (n- 2) ступеня вільності. Ступені вільності позначаються так:df або Df.
