- •Формальные языки записи алгоритмов
- •Трансляторы и интерпретаторы языков программирования
- •Зачем нужно уметь программировать?
- •Комментарии к коду
- •Комментарии к коду
- •Экзотические языки программирования Специальные, экзотические и эзотерические языки программирования
- •Эзотерические языки программирования
- •О языке Python
- •Рекомендуемая литература
- •Интерпретация и компиляция
- •Алгоритм работы простого интерпретатора:
- •Ввод-вывод в Python Ввод данных
- •Вывод данных
- •Установка Python и сред разработки
- •Установка интерпретатора
- •Установка интегрированной среды разработки
- •Cреда программирования wing ide
- •Ключевые слова и идентификаторы в Python Идентификаторы
- •Ключевые слова
- •Концепция присваивания
- •Функция определения длины строки в Python
- •Литералы строк в Python
- •Срезы строк в Python
- •Примеры срезов
- •Методы строк в Python
- •Методы find и rfind
- •Метод replace
- •Метод count
- •Работа с тестирующей системой
- •Задачи поиска, замены и удаления подстроки в строке в Python
- •Метод replace
- •Метод count
- •Удаление подстроки
- •Числа с плавающей точкой (вещественные)
- •Основные операции с вещественными числами
- •Логический тип (bool) в Python
- •Логические операции
- •Принцип условного исполнения
- •Условная инструкция в Python
- •Вложенные условные инструкции
- •Операторы сравнения
- •Логические операторы
- •Каскадные условные инструкции
- •Инструкция pass в Python
- •Инструкции управления циклом в Python
- •Цикл while в Python
- •Вывод числа с обратным порядком цифр и в заданной системе счисления
- •Тест простоты
- •Проверка простоты перебором делителей
- •Факторизация перебором делителей
- •Факторизация перебором делителей на python
- •Факторизация перебором делителей на pascal
- •Разложение числа на множители в Python
- •Алгоритм Евклида: Python
- •Проверка числа на простоту в Python
- •Функция range
- •Фильтрация потока чисел
- •Поиск числа в потоке на Python
- •Поиск максимального и минимального числа в потоке на Python
- •Генерация псевдослучайных чисел
- •Детерминированные генераторы
- •Обработка исключений
- •Генерация исключений
- •"Страхование" от ошибок
- •Функции в программировании
- •Важное дополнение
- •Как написать хорошую функцию
- •Преимущества структурного программирования
- •Без использования структурного программирования
- •С использованием структурного программирования
- •Задания
- •Данная программа ищет самый популярный фильм среди данных
- •Функции в Python
- •Вызов функции и возврат значения
- •Передача параметров в функцию
- •Примеры
- •Граф вызовов функций
- •Пример на языке си
- •Что вернет функция a() в место своего вызова?
- •В каком порядке будут напечатаны X() started и X() finished для a, b, c, d?
- •Стек вызовов
- •Области видимости переменных в Python
- •Правила видимости имен
- •Пример перекрытия областей видимости
- •Доступ на присваивание к нелокальным именам
- •Полиморфизм функций в Python
- •Контрольные вопросы
- •Решение
- •Решение
- •Математические функции в Python
- •Функции в библиотеке math
- •Степенные и логарифмические функции
- •Тригонометрические функции
- •Радианы в градусы и наоборот
- •Пример программы с математическими функциями
- •Кортежи в Python Кортежи в Python
- •Кортежи в логическом контексте
- •Присваивание нескольких значений за раз
- •Методы split и join для списка строк в Python
- •Списки в Python
- •Сортировка выбором
- •Пример сортировки выбором минимума на си
- •Пример сортировки выбором минимума на python
- •Пример сортировки выбором минимума на pascal
- •Сортировка методом пузырька
- •Реализация сортировки массива методом пузырька на языке python
- •Реализация сортировки массива методом пузырька на языке pascal
- •Модернизация сортировки методом пузырька
- •Случайное перемешивание массива в Python
- •Сортировка подсчетом
- •Пример сортировки подсчетом на python
- •Пример сортировки подсчетом на языке си
- •Пример сортировки подсчетом на языке pascal
- •Генерация псевдослучайных чисел
- •Детерминированные генераторы
- •Вычисление суммы натуральных чисел от 1 до n
- •Проверка строки на палиндромность
- •Суммирование списка
- •Наибольшее значение в списке
- •Числа фибоначчи
- •Быстрое возведение в степень
- •Ханойские башни
- •Ограничение на глубину рекурсии
- •Стиль программирования (для Python)
- •Основные правила pep 8: Форматирование
- •Комментарии
- •Функции
- •Работа с текстовыми файлами в Python открытие файла
- •Чтение данных из файла
- •Вывод данных в файл
- •Закрытие файла
- •Двумерные массивы в Python
- •Создание вложенных списков
- •Ввод двумерного массива
- •Пример обработки двумерного массива
- •Вложенные генераторы двумерных массивов
- •Генераторы таблиц
- •Вычисление произведения матриц
- •Многомерные списки в Python обработка и вывод вложенных списков
- •Создание двумерного списка
- •Ввод двумерного списка
- •Сложный пример обработки двумерной таблицы
- •Множества в Python
- •Создание множества
- •Изменение множества
- •Удаление элементов множества
- •Основные операции с множествами
- •Множества в логическом контексте
- •Множества
- •Задание множеств
- •Работа с элементами множеств
- •Перебор элементов множества
- •Операции с множествами
- •Словари (ассоциативные массивы) в Python
- •Когда нужно использовать словари
- •Создание словаря
- •Работа с элементами словаря
- •Перебор элементов словаря
- •Словари со смешанными значениями
- •Пример хранения списков в словаре
- •Пример дешифрации текста после алфавитной замены
- •Дан текст:
- •Итог всех замен:
- •Итог всех замен:
- •Окончательный вариант:
- •Рекурсивный перебор
- •Перебор всех подмножеств
- •Перебор всех k-элементных подмножеств
- •Перебор всех перестановок
- •Одномерное динамическое программирование: количество способов Задача о кузнечике
- •Рекурсивное решение
- •Пример на языке python
- •Пример на языке pascal
- •Нерекурсивное решение
- •Пример на языке python
- •Пример на языке pascal
- •Модификации задачи о кузнечике
- •Пример на языке python
- •Пример на языке pascal
- •Пример на языке python
- •Пример на языке pascal
- •Одномерное динамическое программирование: наилучший способ задача о кузнечике со стоимостями
- •Пример на языке python
- •Пример на языке pascal
- •Восстановление ответа
- •Пример программы на языке python:
- •Пример программы на языке pascal:
- •Пример программы на языке python:
- •Пример программы на языке pascal:
- •Пример программы на языке python
- •Пример программы на языке pascal:
- •Линейные задачи
- •Рекурсивный перебор
- •Перебор всех подмножеств
- •Перебор всех k-элементных подмножеств
- •Перебор всех перестановок
- •Сортировка слиянием
- •Быстрая сортировка Хоара: Python
- •Асимптотика алгоритма
- •Объектно-ориентированное программирование
- •Классы в Python
- •Метод init
- •Создание экземпляров
- •Переменные экземпляра
- •Плановая обработка ошибок при помощи исключений в Python
- •Обработка исключений
- •Генерация исключений
- •“Страхование” от ошибок
- •Юнит-тестирование
- •Тестирование как этап разработки программы
- •Виджеты
- •Происхождение термина «виджет»
- •Типовые элементы интерфейса
- •Модуль tkinter Что такое tkinter?
- •Класс Tk
- •Общее для всех виджетов
- •Методы виджетов
- •"Системные" методы
- •Пример, часы:
- •Пример:
- •Основные виджеты
- •Методы виджета
- •Упаковщики
- •Привязка событий
- •Изображения
- •Пошаговые инструкции
- •Математические функции в Python
- •Функции в библиотеке math
- •Степенные и логарифмические функции
- •Тригонометрические функции
- •Радианы в градусы и наоборот
- •Пример программы с математическими функциями
- •Массивы чисел в модуле math Массивы чисел
- •Векторы
- •Математические операции над векторами
- •Векторные функции
- •Использование списков
- •Основы Numerical Python
- •К слову, о срезах
- •Задание координат и значений функций
- •Векторизация
- •Визуализация функций в Matplotlib
- •Набор точек
- •Функция
- •Украшения
- •Несколько кривых
- •Маркеры
- •Дополнительные аргументы plot()
- •Сохранение файла
- •Гистограммы
- •Модуль os в Python
- •Текущий рабочий каталог
- •Работа с именами файлов и каталогов
- •Получение содержимого каталога
- •Получение сведений о файле
- •Получение абсолютных путей
- •Анализ аргументов командной строки в Python
- •Примеры без использования argparse
- •Использование библиотеки argparse
Перебор всех перестановок
Напишем алгоритм перебора всех перестановок чисел от 1 до n, то есть последовательности, полученной из списка чисел от 1 до n изменением порядка их следования. Известно, что таких перестановок существует n!, напишем функцию, которая выводит все перестановки в лексикографическом порядке.
Как и ранее, функция получает в качестве параметра значение n (длина перестановки) и prefix - уже построенное начало перестановки. Далее перебираются все числа от 1 до n в порядке возрастания в качестве возможного продолжения перестановки. Если число не содержится в списке prefix, то к списку prefix добавляется следующий элемент последовательности и функция вызывается рекурсивно.
Окончание рекурсии происходит в случае, если список prefix имеет длину n, то есть все числа от 1 до nуже содержатся в списке prefix.
def generate(n, prefix): if len(prefix) == n: print(prefix) else: for next in range(1, n + 1): if next not in prefix: generate(n, prefix + [next])
Одномерное динамическое программирование: количество способов Задача о кузнечике
Рассмотрим следующую задачу. На числовой прямой сидит кузнечик, который может прыгать вправо на одну или на две единицы. Первоначально кузнечик находится в точке с координатой 0. Определите количество различных маршрутов кузнечика, приводящих его в точку с координатой n.
Обозначим количество маршрутов кузнечика, ведущих в точку с координатой n, как F(n). Теперь научимся вычислять функцию F(n). Прежде всего заметим, что F(0)=1 (это вырожденный случай, существует ровно один маршрут из точки 0 в точку 0 — он не содержит ни одного прыжка), F(1)=1, F(2)=2. Как вычислить F(n)? В точку n кузнечик может попасть двумя способами — из точки n−2при помощи прыжка длиной 2 и из точки n−1 прыжком длины 1. То есть число способов попасть в точку n равно сумме числа способов попасть в точку n−1 и n−2, что позволяет выписать рекуррентное соотношение: F(n)=F(n−2)+F(n−1), верное для всех n≥2.
Рекурсивное решение
Теперь мы можем оформить решение этой задачи в виде рекурсивной функции:
Пример на языке python
# неэффективное решение
def F(n):
if n < 2:
return 1
else:
return F(n - 1) + F(n - 2)
Пример на языке pascal
function f(n: longint): longint;
begin
if n < 2 then
f := 1
else
f := f(n - 1) + f(n - 2);
end;
Но при попытке вычислить решение этой функции для уже не очень больших n, например, для n=40, окажется, что эта функция работает крайне медленно. И при этом время работы функции с увеличением n растет экспоненциально, то есть такое решение неприемлемо по сложности. Причина этого заключается в том, что при вычислении рекурсивной функции подзадачи, для которых вычисляется решение, «перекрываются». То есть для того, чтобы вычислить F(n) нам нужно вызвать F(n−1) и F(n−2). В свою очередь F(n−1) вызовет F(n−2) и F(n−3). То есть функция F(n−2) будет вызвана два раза — один раз это будет сделано при вычислении F(n−1) и один раз — при вычислении F(n−2). Значение F(n−3) будет вычислено уже три раза, а значение F(n−4) будет вычисляться уже пять раз. При увеличении глубины рекурсии количество «перекрывающихся» вызовов функций будет расти экспоненциально. То есть одна из причин неэффективности рекурсивного решения — одно и то же значение функции вычисляется несколько раз, так как оно используется для вычисления нескольких других значений функции.
