- •Формальные языки записи алгоритмов
- •Трансляторы и интерпретаторы языков программирования
- •Зачем нужно уметь программировать?
- •Комментарии к коду
- •Комментарии к коду
- •Экзотические языки программирования Специальные, экзотические и эзотерические языки программирования
- •Эзотерические языки программирования
- •О языке Python
- •Рекомендуемая литература
- •Интерпретация и компиляция
- •Алгоритм работы простого интерпретатора:
- •Ввод-вывод в Python Ввод данных
- •Вывод данных
- •Установка Python и сред разработки
- •Установка интерпретатора
- •Установка интегрированной среды разработки
- •Cреда программирования wing ide
- •Ключевые слова и идентификаторы в Python Идентификаторы
- •Ключевые слова
- •Концепция присваивания
- •Функция определения длины строки в Python
- •Литералы строк в Python
- •Срезы строк в Python
- •Примеры срезов
- •Методы строк в Python
- •Методы find и rfind
- •Метод replace
- •Метод count
- •Работа с тестирующей системой
- •Задачи поиска, замены и удаления подстроки в строке в Python
- •Метод replace
- •Метод count
- •Удаление подстроки
- •Числа с плавающей точкой (вещественные)
- •Основные операции с вещественными числами
- •Логический тип (bool) в Python
- •Логические операции
- •Принцип условного исполнения
- •Условная инструкция в Python
- •Вложенные условные инструкции
- •Операторы сравнения
- •Логические операторы
- •Каскадные условные инструкции
- •Инструкция pass в Python
- •Инструкции управления циклом в Python
- •Цикл while в Python
- •Вывод числа с обратным порядком цифр и в заданной системе счисления
- •Тест простоты
- •Проверка простоты перебором делителей
- •Факторизация перебором делителей
- •Факторизация перебором делителей на python
- •Факторизация перебором делителей на pascal
- •Разложение числа на множители в Python
- •Алгоритм Евклида: Python
- •Проверка числа на простоту в Python
- •Функция range
- •Фильтрация потока чисел
- •Поиск числа в потоке на Python
- •Поиск максимального и минимального числа в потоке на Python
- •Генерация псевдослучайных чисел
- •Детерминированные генераторы
- •Обработка исключений
- •Генерация исключений
- •"Страхование" от ошибок
- •Функции в программировании
- •Важное дополнение
- •Как написать хорошую функцию
- •Преимущества структурного программирования
- •Без использования структурного программирования
- •С использованием структурного программирования
- •Задания
- •Данная программа ищет самый популярный фильм среди данных
- •Функции в Python
- •Вызов функции и возврат значения
- •Передача параметров в функцию
- •Примеры
- •Граф вызовов функций
- •Пример на языке си
- •Что вернет функция a() в место своего вызова?
- •В каком порядке будут напечатаны X() started и X() finished для a, b, c, d?
- •Стек вызовов
- •Области видимости переменных в Python
- •Правила видимости имен
- •Пример перекрытия областей видимости
- •Доступ на присваивание к нелокальным именам
- •Полиморфизм функций в Python
- •Контрольные вопросы
- •Решение
- •Решение
- •Математические функции в Python
- •Функции в библиотеке math
- •Степенные и логарифмические функции
- •Тригонометрические функции
- •Радианы в градусы и наоборот
- •Пример программы с математическими функциями
- •Кортежи в Python Кортежи в Python
- •Кортежи в логическом контексте
- •Присваивание нескольких значений за раз
- •Методы split и join для списка строк в Python
- •Списки в Python
- •Сортировка выбором
- •Пример сортировки выбором минимума на си
- •Пример сортировки выбором минимума на python
- •Пример сортировки выбором минимума на pascal
- •Сортировка методом пузырька
- •Реализация сортировки массива методом пузырька на языке python
- •Реализация сортировки массива методом пузырька на языке pascal
- •Модернизация сортировки методом пузырька
- •Случайное перемешивание массива в Python
- •Сортировка подсчетом
- •Пример сортировки подсчетом на python
- •Пример сортировки подсчетом на языке си
- •Пример сортировки подсчетом на языке pascal
- •Генерация псевдослучайных чисел
- •Детерминированные генераторы
- •Вычисление суммы натуральных чисел от 1 до n
- •Проверка строки на палиндромность
- •Суммирование списка
- •Наибольшее значение в списке
- •Числа фибоначчи
- •Быстрое возведение в степень
- •Ханойские башни
- •Ограничение на глубину рекурсии
- •Стиль программирования (для Python)
- •Основные правила pep 8: Форматирование
- •Комментарии
- •Функции
- •Работа с текстовыми файлами в Python открытие файла
- •Чтение данных из файла
- •Вывод данных в файл
- •Закрытие файла
- •Двумерные массивы в Python
- •Создание вложенных списков
- •Ввод двумерного массива
- •Пример обработки двумерного массива
- •Вложенные генераторы двумерных массивов
- •Генераторы таблиц
- •Вычисление произведения матриц
- •Многомерные списки в Python обработка и вывод вложенных списков
- •Создание двумерного списка
- •Ввод двумерного списка
- •Сложный пример обработки двумерной таблицы
- •Множества в Python
- •Создание множества
- •Изменение множества
- •Удаление элементов множества
- •Основные операции с множествами
- •Множества в логическом контексте
- •Множества
- •Задание множеств
- •Работа с элементами множеств
- •Перебор элементов множества
- •Операции с множествами
- •Словари (ассоциативные массивы) в Python
- •Когда нужно использовать словари
- •Создание словаря
- •Работа с элементами словаря
- •Перебор элементов словаря
- •Словари со смешанными значениями
- •Пример хранения списков в словаре
- •Пример дешифрации текста после алфавитной замены
- •Дан текст:
- •Итог всех замен:
- •Итог всех замен:
- •Окончательный вариант:
- •Рекурсивный перебор
- •Перебор всех подмножеств
- •Перебор всех k-элементных подмножеств
- •Перебор всех перестановок
- •Одномерное динамическое программирование: количество способов Задача о кузнечике
- •Рекурсивное решение
- •Пример на языке python
- •Пример на языке pascal
- •Нерекурсивное решение
- •Пример на языке python
- •Пример на языке pascal
- •Модификации задачи о кузнечике
- •Пример на языке python
- •Пример на языке pascal
- •Пример на языке python
- •Пример на языке pascal
- •Одномерное динамическое программирование: наилучший способ задача о кузнечике со стоимостями
- •Пример на языке python
- •Пример на языке pascal
- •Восстановление ответа
- •Пример программы на языке python:
- •Пример программы на языке pascal:
- •Пример программы на языке python:
- •Пример программы на языке pascal:
- •Пример программы на языке python
- •Пример программы на языке pascal:
- •Линейные задачи
- •Рекурсивный перебор
- •Перебор всех подмножеств
- •Перебор всех k-элементных подмножеств
- •Перебор всех перестановок
- •Сортировка слиянием
- •Быстрая сортировка Хоара: Python
- •Асимптотика алгоритма
- •Объектно-ориентированное программирование
- •Классы в Python
- •Метод init
- •Создание экземпляров
- •Переменные экземпляра
- •Плановая обработка ошибок при помощи исключений в Python
- •Обработка исключений
- •Генерация исключений
- •“Страхование” от ошибок
- •Юнит-тестирование
- •Тестирование как этап разработки программы
- •Виджеты
- •Происхождение термина «виджет»
- •Типовые элементы интерфейса
- •Модуль tkinter Что такое tkinter?
- •Класс Tk
- •Общее для всех виджетов
- •Методы виджетов
- •"Системные" методы
- •Пример, часы:
- •Пример:
- •Основные виджеты
- •Методы виджета
- •Упаковщики
- •Привязка событий
- •Изображения
- •Пошаговые инструкции
- •Математические функции в Python
- •Функции в библиотеке math
- •Степенные и логарифмические функции
- •Тригонометрические функции
- •Радианы в градусы и наоборот
- •Пример программы с математическими функциями
- •Массивы чисел в модуле math Массивы чисел
- •Векторы
- •Математические операции над векторами
- •Векторные функции
- •Использование списков
- •Основы Numerical Python
- •К слову, о срезах
- •Задание координат и значений функций
- •Векторизация
- •Визуализация функций в Matplotlib
- •Набор точек
- •Функция
- •Украшения
- •Несколько кривых
- •Маркеры
- •Дополнительные аргументы plot()
- •Сохранение файла
- •Гистограммы
- •Модуль os в Python
- •Текущий рабочий каталог
- •Работа с именами файлов и каталогов
- •Получение содержимого каталога
- •Получение сведений о файле
- •Получение абсолютных путей
- •Анализ аргументов командной строки в Python
- •Примеры без использования argparse
- •Использование библиотеки argparse
Тест простоты
Тест простоты — алгоритм, который по заданному натуральному числу определяет, простое ли это число.
Определение простоты заданного числа в общем случае не такая уж тривиальная задача. Только в 2002 году было доказано, что она полиномиально разрешима (то есть ответ на вопрос о простоте числа из k цифр можно дать за время, пропорциональное некоторой степени числа k). Тем не менее, тестирование простоты значительно легче задачи факторизации заданного числа (разложения числа на множители), для которой полиномиального алгоритма пока не найдено.
Проверка простоты перебором делителей
Перебор делителей — алгоритм тестирования простоты числа путем полного перебора всех возможных потенциальных делителей.
Обычно перебор делителей заключается в переборе всех целых (как вариант: простых) чисел от 2 доквадратного корня из тестируемого числа n и в вычислении остатка от деления n на каждое из этих чисел. Если остаток от деления на некоторое число m равен нулю, то m является делителем n — в этом случае n объявляется составным, и алгоритм заканчивает работу. При достижении квадратного корня из n и невозможности сократить n ни на одно из меньших чисел, n объявляется простым.
Почему можно остановить перебор делителей на корне из n? Предположим, у n есть некоторый делитель p. Тогда n/p так же будет его делителем, и, очевидно, один из этих делителей не превосходит корня из n.
В практических задачах данный алгоритм применяется редко ввиду его большой асимптотической сложности, однако его применение оправдано в случае, если проверяемые числа относительно невелики, так как данный алгоритм довольно легко реализуем.
Факторизация перебором делителей
Разложение числа на простые множители называется факторизацией.
Факторизация целых чисел обеспечивается основной теоремой арифметики:
Каждое натуральное число n>1 можно представить в виде n=p1∗p2∗p3∗…∗pk, где p1,p2,p3,…pk— простые числа, причём такое представление единственно с точностью до порядка следования сомножителей.
Факторизация числа методом перебора делителей производится почти так же, как и тест простоты числа методом перебора делителей. Производится перебор всех целых (как вариант: простых) чисел от 2 до квадратного корня из факторизуемого числа n и в вычислении остатка от деления n на каждое из этих чисел. Если остаток от деления на некоторое число m равен нулю, то m является делителем n. В этом случае n сокращается на m и процедура повторяется. По достижении квадратного корня из оставшегося числа и невозможности сократить его ни на одно из меньших чисел, оно объявляется простым и также приписывается к простым сомножителям исходного числа n.
Факторизация целых чисел для больших чисел является сложной задачей. Её сложность лежит в основе некоторых алгоритмов безопасности с открытым ключом шифрования, например, алгоритма RSA.
Факторизация перебором делителей на python
def factorize(n): divisor = 2 while divisor ** 2 <= n: if n % divisor == 0: n //= divisor print(divisor) else: divisor += 1 if n != 1: print(n) n = int(input()) factorize(n)
