1
-
Визначення та основні завдання комп'ютерної графіки
При обробці інформації, пов'язаної із зображенням на моніторі, прийнято виділяти три основних напрямки:
- розпізнавання образів;
- Обробку зображень;
- Машинну графіку.
Основне завдання розпізнавання образів полягає в перетворенні вже наявного зображення на формально зрозумілу мову символів.
Розпізнавання образів або система технічного зору «COMPUTER VISION» - це сукупність методів, що дозволяють отримати опис зображення, поданого на вхід, або віднести задане зображення до певного класу (так поступають, наприклад, при сортуванні пошти). Одним із завдань «COMPUTER VISION» є так звана «скелетизації» об'єктів, при якій відновлюється якась основа об'єкта, його «скелет».
Обробка зображень «IMAGE PROCESSING» розглядає завдання, в яких і вхідні і вихідні дані є зображеннями. Наприклад, передача зображення з усуненням шумів і стисненням даних, перехід від одного виду зображення до іншого від кольорового до чорно-білому і т.д..
Комп'ютерна машинна графіка «COMPUTER GRAPHICS» відтворює зображення в разі, коли вихідної є інформація неізобразітельной природи.
Комп'ютерна графіка - це наука, предметом вивчення якої є створення, зберігання і обробка моделей і їх зображень за допомогою ЕОМ, тобто це розділ інформатики, який займається проблемами отримання різних зображень (малюнків, креслень, мультиплікації) на комп'ютері.
У комп'ютерній графіці розглядаються наступні завдання:
- Представлення зображення в комп'ютерній графіці;
- Підготовка зображення до візуалізації;
- Створення зображення;
- Здійснення дій з зображенням.
Інтерактивна комп'ютерна графіка - це так само використання комп'ютерів для підготовки і відтворення зображень, але при цьому користувач має можливість оперативно вносити зміни в зображення безпосередньо в процесі його відтворення, тобто передбачається можливість роботи з графікою в режимі діалогу в реальному масштабі часу.
2 Галузі застосування комп граф
Наукова графіка — перші комп'ютери використовувалися лише для вирішення наукових і виробничих завдань. Щоб краще зрозуміти отримані результати, виробляли їх графічну обробку, будували графіки, діаграми, креслення розрахованих конструкцій. Перші графіки на машині отримували в режимі символьного друку. Потім з'явилися спеціальні пристрої — графопобудовники (плоттери) для створення креслень і графіків чорнильним пером на папері. Сучасна наукова комп'ютерна графіка дає можливість проводити обчислювальні експерименти з наочним поданням їх результатів.
Ділова графіка — область комп'ютерної графіки, призначена для наочного представлення різних показників роботи установ. Планові показники, звітна документація, статистичні зведення — для таких об'єктів за допомогою ділової графіки створюються ілюстративні матеріали. Програмні засоби ділової графіки включаються до складу електронних таблиць.
Конструкторська графіка використовується в роботі інженерів — конструкторів, архітекторів, винахідників нової техніки. Цей вид комп'ютерної графіки є обов'язковим елементом САПР (систем автоматизації проектування). Засобами конструкторської графіки можна отримувати як плоскі зображення (проекції, переріз), так і просторові тривимірні зображення.
Ілюстративна графіка — це довільне малювання і креслення на екрані комп'ютера. Пакети ілюстративній графіки відносяться до прикладного програмного забезпечення загального призначення. Найпростіші програмні засоби ілюстративної графіки називаються графічними редакторами.
Художня і рекламна графіка — що стала популярною багато в чому завдяки телебаченню. За допомогою комп'ютера створюються рекламні ролики, мультфільми, комп'ютерні ігри, відео уроки, відео презентації. Графічні пакети для цих цілей вимагають великих ресурсів комп'ютера за швидкодією і пам'яті. Відмінною особливістю цих графічних пакетів є можливість створення реалістичних зображень і «рухомих картинок». Отримання малюнків тривимірних об'єктів, їх повороти, наближення, видалення, деформації пов'язано з великим обсягом обчислень. Передача освітленості об'єкта в залежності від положення джерела світла, від розташування тіней, від фактури поверхні, вимагає розрахунків, які враховують закони оптики.
Комп'ютерна анімація — це отримання рухомих зображень на екрані дисплея. Художник створює на екрані малюнки початкового і кінцевого положення рухомих об'єктів, всі проміжні стани розраховує і зображує комп'ютер, виконуючи розрахунки, що спираються на математичний опис даного виду руху. Отримані малюнки, що виводяться послідовно на екран з певною частотою, створюють ілюзію руху.
Мультимедіа — це об'єднання високоякісного зображення на екрані комп'ютера зі звуковим супроводом. Найбільшого поширення системи мультимедіа отримали в галузі навчання, реклами, розваг.
3 Види комп граф
Растрова графіка
Основним елементом растрового зображення являється точка (крапка). Якщо зображення екранне, то ця точка називається пікселем. У залежності від того, на яке графічне розрішення екрану налаштована операційна система комп’ютера, на екрані можуть розміщуватись зображення, які мають 640х480, 800х600, 1024х768 і більше пікселів.
З розміром зображення безпосередньо пов’язано його розрішення. Цей параметр вимірюється в точках на дюйм (dots per inch - dpi). У монітора з діагоналлю 15 дюймів розмір зображення на екрані складає приблизно 28х21см. Знаючи, що в одному дюймі 25,4 мм, можна розрахувати, що при роботі монітора в режимі 800х600 пікселів розрішення екранного зображення рівно 72 dpi.
При друці розрішення повинно бути набагато вище. Поліграфічний друк повноколірного зображення вимагає розрішення 200-300 dpi. Стандартний фотознімок 10х15 см повинен мати приблизно 1000х1500 пікселів. Отже, таке зображення буде мати 1,5 млн. точок, а якщо зображення кольорове і на координування кожної точки використані три байти, то звичайній фотографії відповідає масив даних розміром більше 4 Мбайт.
Як бачимо, великий об’єм даних – це основна проблема при використанні растрових зображень. Для активних робіт з крупними ілюстраціями типу журнальної полоси потрібні комп’ютери з великими розмірами оперативної пам’яті (128 Мбайт і більше). Такі комп’ютери повинні мати і високопродуктивні процесори.
Другий недолік растрових зображень пов’язаний з неможливістю розглянути деталі. Оскільки зображення складається із точок, то збільшення зображення призводить до того, що ці точки стають крупніші. Ніяких деталей при збільшенні растрового зображення розглядіти не вдається. Більше того, збільшення точок растру візуально спотворює ілюстрацію і робить її грубою. Цей ефект називається пікселізацією.
Векторна графіка[ред. • ред. код]
Докладніше: Векторна графіка
У векторній графіці основним елементом зображення є лінія. В растровій графіці також існують лінії, але там вони розглядаються як комбінації точок. Відповідно, чим довша растрова лінія, тим більше пам'яті вона потребує. У векторній графіці обсяг пам'яті, для зберігання лінії, не залежить від розміру лінії, оскільки лінія представляється у вигляді формули, а точніше, у вигляді кількох параметрів. Що б ми не робили з цією лінією, міняються тільки її параметри, які зберігаються в чарунках пам'яті. Кількість чарунків залишається незмінною для будь-якої лінії.
Лінія — елементарний об'єкт векторної графіки. Все, що є у векторній ілюстрації, складається з ліній. Найпростіші об'єкти об'єднуються в складніші, наприклад, чотирикутник можна розглядати як чотири взаємопов'язані лінії, а куб як дванадцять взаємопов'язаних ліній, або як шість чотирикутників. Через такий підхід векторну графіку часто називають об'єктно-орієнтованою графікою.
Як усі об'єкти, лінії мають властивості. До цих властивостей належать: форма лінії, її товщина, колір, характер лінії (суцільна, пунктирна тощо). Замкнуті лінії мають властивість заповнення. Внутрішня область замкнутого контуру може бути заповнена кольором, текстурою, картою (заготовлені растрові зображення).
Векторна графіка цих недоліків не має, але значно ускладнює роботу зі створення художніх ілюстрацій. На практиці засоби векторної графіки використовують не для створення художніх композицій, а для оформлювальних, креслярських і проектно-конструкторських робіт.
У векторній графіці достатньо складні композиції мають невеликий обсяг. Питання масштабування вирішуються також легко. При необхідності зображення можна збільшувати до найдрібніших деталей.
Фрактальна графіка[ред. • ред. Код]
Докладніше: Фрактальна графіка
Фрактальна графіка обраховується як векторна, але відрізняється тим, що жодних об'єктів у пам'яті комп'ютера не зберігається. Зображення будується за рівнянням (або за системою рівнянь), тому нічого, крім формули, зберігати не потрібно. Змінивши коефіцієнти у рівнянні, отримують зовсім іншу картину.
Найпростішим фрактальним об'єктом є фрактальний трикутник. Фрактальними властивостями володіють багато об'єктів живої і неживої природи. Звичайна сніжинка при збільшенні виявляється фрактальним об'єктом. Фрактальні алгоритми лежать в основі росту кристалів і рослин.
Властивість фрактальної графіки моделювати образи живої природи обчисленням часто використовують для автоматичної генерації незвичних ілюстрацій.
Тривимірна графіка[ред. • ред. Код]
Докладніше у статті 3D графіка
Тривимірна графіка (3D — від англ. Three dimensions — «три виміри») оперує з об'єктами в тривимірному просторі. Зазвичай результати являють собою плоску картинку, проекцію. Тривимірна комп'ютерна графіка широко використовується в кіно, комп'ютерних іграх.
У тривимірній комп'ютерній графіці всі об'єкти зазвичай є набором поверхонь або часток. Мінімальну поверхню називають полігоном. Як полігон зазвичай обирають трикутники.
Усіма візуальними перетвореннями в 3D-графіці управляють матриці. У комп'ютерній графіці використовується три види матриць:
матриця повороту
матриця зсуву
матриця масштабування
Будь-який полігон можна представити у вигляді набору з координат його вершин. Так, у трикутника буде 3 вершини. Координати кожної вершини є вектором (x, y, z). Помноживши вектор на відповідну матрицю, ми отримаємо новий вектор. Зробивши таке перетворення з усіма вершинами полігону, отримаємо новий полігон, а перетворивши всі полігони, отримаємо новий об'єкт, повернений / зрушений /масштабуваний відносно початкового.
4 Області застосування комп граф
Основні сфери застосування технологій комп’ютерної графіки: - графічний інтерфейс користувача; - спецефекти, кінематографія, телебачення; - цифрове телебачення, Інтернет, відеоконференції; - обробка цифрових фотографій; - комп'ютерні ігри, системи віртуальної реальності. Комп'ютерна графіка застосовується для візуалізації даних у різних сферах людської діяльності: у медицині - комп'ютерна томографія; в науці - наприклад, для наочного зображення складу речовини, побудови графіків; в дизайні - для реклами, поліграфії, моделювання, та ін. Комп'ютерна графіка складає цілий ряд напрямків і має різне застосування. За допомогою КГ вирішують багато графічних задач. У комп'ютері синтезуються прості і складні об'єкти: поверхні, тіла, структури. Без швидкого і точного рішення графічних і геометричних задач не можна освоювати космос, конструювати складні механізми і машини, будувати інженерні спорудження, розвивати медицину і т.п.. Комп'ютерну графіку широко застосовують при рішенні актуальної проблеми підвищення продуктивності і точності інженерної роботи. Цього досягають автоматизацією розрахунково-графічних робіт, вирішуючи різноманітні задачі в області машинобудування, літакобудування, профілювання складного різального інструмента і т.
6
Векторный дисплей потенциально может работать на несколько порядков быстрее дисплея с поточечным выводом. Последовательность соединенных векторов может быть вычерчена без потерь времени на установку луча в точку начала линии, причем на вывод каждого вектора требуется 1—2 мкс. Из этого следует, что описанная в разд. 2.3 программа регенерации будет совершенно непригодна, поскольку на обработку каждой пары координат требуется до 20 мкс и более. [c.79] По принципу визуализации изображения графические дисплеи делятся на векторные и растровые. Векторные дисплеи отображают графику на экране в виде линий, образованных периодическим движением луча вдоль них. У растровых дисплеев принцип получения изображения телевизионный, оно составлено из точек. Растровые дисплеи позволяют выводить и текст и графику. Широко распространена так называемая псевдографика, когда изображение составляется из символов (например, небольших квадратиков). Растровые дисплеи обычно обладают высокой разрешающей способностью. Наибольшие удобства для пользователя представляют растровые цветные дисплеи. Многоцветность позволяет одновременно рассматривать налагаемые друг на друга изображения в разных цветах, например, несколько слоев печатного монтажа
Запоминающая электронно-лучевая трубка (также известная как трубка Вильямса, англ. Williams tube) — запоминающее устройство на основе электронно-лучевой трубки. Запоминающие трубки использовались в качестве памяти на некоторых ранних компьютерах.
