- •1.Цитология как наука. Предмет цитологии. Задачи цитологии.
- •2.Цитология как наука. Методы цитологии.
- •3.Световая микроскопия, особенности. Способы подготовки препаратов для световой микроскопии
- •4.Электронная микроскопия, особенности. Способы подготовки препаратов для электронной микроскопии
- •5.Типы красителей. Химические основы окрашивания препаратов
- •6.Виды микроскопии .Особенности
- •7. Клетка как основная структурно-функциональная единица строения живых существ.
- •8.Сравнительная характеристика строения клеток про- и эукариот
- •9. Особенности строения прокариотической клетки
- •10.Особенности строения эукариотической клетки
- •11. Основные положения клеточной теории
- •12. Основные положения теории целлюлярной патологии.
- •13. Химический состав биологических мембран
- •14.Функции биологических мембран
- •19. Особенности строения клеточной стенки растений и бактерий.
- •20.Мембранные органоиды клетки
- •21 И 22 .Эндоплазматический ретикулум: структура и функции
- •23. Назначение белков, синтезируемых в клетке
- •24.Механизмы обновления клеточных мембран
- •25. Цитоплазма клетки, ее основные компоненты
- •26.Цитоплазма клетки. Роль в клетке.
- •27. Гиалоплазма, ее ультраструктура и функции в клетке
- •28. Немембранные компоненты клетки
- •29.Строение, локализация и функции аппарата Гольджи
- •30.Функциональное взаимодействие аппарата Гольджи и других мембранных органоидов клетки
- •31. Происхождение, строение и назначение лизосом
- •32. Мембранная система клетки. Одномембранные клеточные компоненты
- •33.Мембранная система клетки. Двумембранные клеточные компоненты.
- •34.Полуавтономные органеллы клетки.
- •35.Строение и функции пластид.
- •36. Строение и функции митохондрий.
- •37. Организация энергетического обмена в клетке
- •38. Организация «минимальной клетки».
- •39. Химический состав и строение рибосом
- •40. Функции рибосом
- •43. Полирибосомы. Роль рибосом в синтезе белка.
- •44. Цитоскелет клетки, его молекулярная организация
- •45. Цитоскелет клетки, функции
- •46. Микрофиламенты, молекулярная организация, функции
- •47. Микрофиламенты, принципы самосборки
- •48. Промежуточные филаменты, , молекулярная организация, функции
- •49. Промежуточные филаменты, принципы самосборки
- •50. Микротрубочки, молекулярная организация
- •51. Микротрубочки, принципы самосборки
- •53. Строение микротрубочек, их функции в клетке
- •54. Ахроматиновое веретено, молекулярная организация, функции
- •55. Ахроматиновое веретено, принципы самосборки.
- •56. Клеточный центр.
- •57. Строение, происхождение и функции центриолей
- •58. Строение ресничек и жгутиков. Базальные тела
- •59. Механохимические процессы в клетке
- •60. Современные представления о происхождении пластид
- •61. Современные представления о происхождении митохондрий
- •62. Современные представления о происхождении ядерной оболочки и эукариот
- •67. Компартментализация клеточного метаболизма
- •68. Включения клетки
- •69. Морфология, локализация и функция ядра клетки
- •70. Основные компоненты ядра под обычным микроскопом, их строение и роль
- •71. Строение и функции ядерной оболочки и поровых комплексов
- •72. Химический состав и структура в обычном и электронном микроскопе интерфазного хроматина.
- •73. Понятие о гетеро- и эухроматине
- •74. Метафазные хромосомы, их морфология
- •75. Молекулярная организация хромосом, механизмы их компактизации
- •76. Кариоплазма и кариолимфа (ядерный матрикс, его структура и роль)
- •77. Локализция, структура и назначение ядрышка
- •78. Поведение ядрышка в митозе.
- •79. Клеточный цикл
- •80. Жизненный цикл клетки
- •81. Пролиферация клеток
- •82. Специализация клеток.
- •83. Периоды интерфазы.
- •84. Процессы, происходящие в клетке при митозе
- •85. Митоз, его фазы и биологическая роль.
- •86. Мейоз, его фазы и биологическая роль.
- •87. Сравнительная характеристика митотического и мейотического циклов
- •88. Процессы, происходящие с ядерной оболочкой при делении клетки.
72. Химический состав и структура в обычном и электронном микроскопе интерфазного хроматина.
Сохраняя преемственность в ряду клеточных поколений, хроматин в зависимости от периода и фазы клеточного цикла меняет свою организацию. В интерфазе при световой микроскопии он выявляется в виде глыбок, рассеянных в нуклеоплазме ядра. При переходе клетки к митозу, особенно в метафазе, хроматин приобретает вид хорошо различимых отдельных интенсивно окрашенных телец — хромосом.
Интерфазную и метафазную формы существования хроматина расценивают как два полярных варианта его структурной организации, связанных в митотическом цикле взаимопереходами. В пользу такой оценки свидетельствуют данные электронной микроскопии о том, что в основе как интерфазной, так и метафазной формы лежит одна и та же элементарная нитчатая структура. В процессе электронно-микроскопических и физико-химических исследований в составе интерфазного хроматина и метафазных хромосом были выявлены нити (фибриллы) диаметром 3,0—5,0, 10, 20—30 нм. Полезно вспомнить, что диаметр двойной спирали ДНК составляет примерно 2 нм, диаметр нитчатой структуры интерфазного хроматина равен 100—200, а диаметр одной из сестринских хроматид метафазной хромосомы — 500— 600 нм.
Интерфазная хромонема. Следующий уровень структурной организации генетического материала обусловлен укладкой хроматиновой фибриллы в петли. В их образовании, по-видимому, принимают участие негистоновые белки, которые способны узнавать специфические нуклеотидные последовательности вненуклеосомной ДНК, отдаленные друг от друга на расстояние в несколько тысяч пар нуклеотидов. Эти белки сближают указанные участки с образованием петель из расположенных между ними фрагментов хроматиновой фибриллы (рис. 3.48). Участок ДНК, соответствующий одной петле, содержит от 20 000 до 80 000 п. н. Возможно, каждая петля является функциональной единицей генома. В результате такой упаковки Хроматиновая фибрилла диаметром 20—30 нм преобразуется в структуру диаметром 100—200 нм, называемую интерфазной хромонемой.
73. Понятие о гетеро- и эухроматине
Эухроматин - это функционально активные (участвующие в транскрипции) части хромосом, которые находятся в деконденсированном (диффузном) состоянии.
Гетерохроматин - функционально неактивные отделы, которые конденсированы, образуя глыбки.
При изменении состояния клетки или в процессе дифференцировки возможен переход части гетерохроматина в эухроматин и обратно (факультативный гетерохроматин(Х-хромосома в организме человека)).
Эухроматин - это функционально активные (участвующие в транскрипции) части хромосом, которые находятся в деконденсированном (диффузном) состоянии.
Гетерохроматин - функционально неактивные отделы, которые конденсированы, образуя глыбки.
При изменении состояния клетки или в процессе дифференцировки возможен переход части гетерохроматина в эухроматин и обратно (факультативный гетерохроматин(Х-хромосома в организме человека)).
Конститутивный гетерохроматин генетически не активен, он не транскрибируется, реплицируется он позже всего остального хроматина, в его состав входит ДНК, с высокоповторяющимися последовательностями нуклеотидов; он локализован в центромерных, теломерных зонах митотических хромосом.
Доля конститутивного хроматина может быть неодинакова. У млекопитающих на него приходится 10-15% всего генома, у амфибий –до 60%. Функциональное значение структуризация интерфазного ядра, с некоторыми регуляторными функциями.
