- •1.Предмет биохимии. Биохимия в системе естественных наук. Роль биохимии в развитии медицины.
- •2.Аминокислоты. Структура. Явление стереоизомерии. Классификации аминокислот.
- •Ионные формы аминокислот
- •Классификация По радикалу
- •По функциональным группам
- •По классам аминоацил-тРнк-синтетаз
- •По путям биосинтеза
- •По способности организма синтезировать из предшественников
- •По характеру катаболизма у животных
- •3.Аминокислоты. Свойства аминокислот, их поведение в растворе. Методы определения аминокислот.
- •4.Биосинтез аминокислот. Заменимые и незаменимые аминокислоты.
- •5.Непротеиногенные аминокислоты. Производные аминокислот.
- •Соли аминокислот
- •Эфиры аминокислот
- •Азометины
- •6.Катаболизм аминокислот.
- •1. Механизм реакции
- •2. Органоспецифичные аминотрансферазы ант и act
- •3. Биологическое значение трансаминирования
- •4. Диагностическое значение определения аминотрансфераз в клинической практике
- •1. Окислительное дезаминирование
- •2. Непрямое дезаминирование (трансдезаминирование)
- •3. Неокислительное дезамитровате
- •7.Структура и биологические функции пептидов и белков. Классификации белков.
- •8.Первичная структура белков.
- •9.Вторичная структура белков. Структурирующие факторы (силы). Явления денатурации и ренатурации белков.
- •10.Третичная и четвертичная структура белков. Структурирующие факторы (силы). Глобулярные и фибриллярные белки.
- •11.Расщепление белков в желудочно-кишечном тракте. Протеазы. Проферменты, их биологическая роль.
- •12.Катаболизм белков. Убиквитин-зависимая и убиквитин-независимая деградация белков. Цикл мочевины. Мочевая кислота.
- •13.Ферменты. Принципы классификации и номенклатуры. Структура и биологическая роль.
- •14.Активные центры ферментов. Основные представления о механизме ферментативных реакций. Обратимость ферментативных реакций.
- •15. Регуляция активности ферментов. Аллостерические ферменты. Активаторы и ингибиторы ферментов. Принцип обратной связи. Регуляция активности ферментов
- •16.Кинетика ферментативных реакций. Зависимость Михаэлиса-Ментен. График обратных величин Лайнуивера-Берка и его практическое применение.
- •20.Структура моносахаридов. Альдозы и кетозы. Стереоизомеры. Эпимеры. Номенклатура. Моносахариды или простые сахара
- •Стереоизомерия моносахаридов
- •21.Циклические формы моносахаридов. Пиранозы и фуранозы. Стереоизомеры циклических форм моносахаридов. Конформация циклических форм. Пиранозные и фуранозные кольцевые структуры моносахаридов
- •Аномерия
- •22.Структура и свойства олигосахаридов. Их биологическая роль. Олигосахариды
- •23.Структура и свойства полисахаридов. Их биологическая роль. Полисахариды
- •Гомополисахариды
- •24.Гликопротеины, гликозаминогликаны, протеогликаны. Структура и биологическая роль. Гликопротеины и протеогликаны
- •Гликопротеины
- •Общий обзор
- •Локализация
- •Результат
- •29.Окисление пировиноградной кислоты. Функционирование пируватдегидрогеназного комплекса. Роль коферментов. Регуляция процесса.
- •31. Цикл лимонной кислоты. Биологическая роль. Ферментное обеспечение. Энергетический выход. Образование nadh, fadh2 и gtp в цикле лимонной кислоты. Регуляция цикла
- •Глиоксилатный путь катаболизма углеводов. Ферментное обеспечение. Биологическая роль.
- •Окисление внемитохондриального nadh. Челночные системы митохондрий.
- •Пентозомонофосфатный путь катаболизма углеводов. Ферментное обеспечение. Биологическая роль.
- •Глюконеогенез. Биосинтез гликогена из пировиноградной кислоты. Ключевые стадии. Ферментное обеспечение. Регуляция глюконеогенеза.
- •Биосинтез гликогена. Ферментное обеспечение процесса. Реципрокная регуляция гликоген-синтазы и гликоген-фосфорилазы.
- •Регуляция расщепления и синтеза гликогена также взаимосвязана
- •Общие свойства, классификация и номенклатура липидов. Жирные кислоты. Строение и свойства нейтральных жиров. Воска.
- •Строение и свойства фосфоглицеридов.
- •Сфинголипиды. Строение и биологическая роль.
- •41) Строение и св-ва стероидов. Холестерол и его эфиры. Соединения липидов с друг. Биомолекулами. Липопротеины.
- •42) Образование мицелл, монослоёв, бислоёв и липосом фосфолипидами. Их роль. Структура, св-ва и функционирование биологических мембран.
- •47) Биосинтез насыщенных жк. Стр-ра синтазной с-мы для жк. Биосинтез пальмитиновой к-ты.
- •48) Биосинтез ненасыщенных жк. Незаменимые жк. Регуляция биосинтеза жк.
- •49) Биосинтез моно-, ди-, триацилглицеролов.
- •50) Метаболизм глицерофосфолипидов.
- •53. Строение нуклеиновых кислот. Пуриновые и пиримидиновые основания. Углеводные компоненты нуклеиновых кислот.
- •54. Нуклеотиды и их биологическая роль. Структура и функции атф.
- •55. Биосинтез пуриновых нуклеотидов
- •Образование дифосфатов и трифосфатов пуриновых нуклеозидов
- •Синтез пуриновых дезоксирибонуклеотидов
- •56. Пути регенерации и деградации пуринов. Пути регенерации пуриновых нуклеотидов
- •57. Биосинтез пиримидиновых нуклеотидов. Регуляция
- •Далее следуют реакции образования нуклеозидди- и трифосфатов, дезоксирибо-нуклеотидов, а также других типов нуклеотидов – цитидиновых и тимидиновых.
- •Регуляция биосинтеза пиримидинов
- •58. Пути регенерации и деградации пиримидиновых нуклеотидов. Регенерация пиримидиновых нуклеотидов
- •Деградация пиримидиновых нуклеотидов
- •59. Классификация нуклеиновых кислот. Первичная и вторичная структура днк. Значение двуспирального строения днк. Принцип комплиментарности.
- •61.Экспрессия генов
- •62. Оперон
- •63. Регуляция экспрессии генома у эукариот осуществляется на нескольких уровнях:
- •66. Новосинтезированным белкам надо "созреть"
- •70. Жирорастворимые витамины, их биологическая роль.
- •71. Водорастворимые витамины, их биологическая роль.
- •72.Биологическая роль микроэлементов: железа, меди, цинка, кобальта, марганца, йода. Биологическая роль макроэлементов: натрия, калия, кальция, магния, фосфора, серы, хлора.
- •Биогенные элементы
- •67. Фотосинтетический аппарат. Хлорофиллы, каратиноиды и другие пигменты. Световая стадия фотосинтеза. Фотофосфорилирование.
- •68. Темновая стадия фотосинтеза. Цикл Кальвина. Общее уравнение фотосинтеза. Затраты атр и nadph.
- •69.Механизм реализации фотосинтетического пути Хэтча-Слэка (с4). Его биологическая роль. Фотодыхание.
- •73.Биохимические основы адаптации.
- •74.Биотрансформация вредных (токсических) веществ в экосистемах.
- •75.Пути метаболизма ксенобиотиков в организме
- •76. Функционирование микросомальной системы окисления
- •1. Основные ферменты микросомальных
- •2. Функционирование цитохрома р450
- •3. Свойства системы микросомального
- •Широкая субстратная специфичность. Изоформы р450
- •77.Реакции конъюгации в печени.
- •78.Биохимические основы защиты клеток от повреждающих воздействий
- •79. Антиоксидантная система.
78.Биохимические основы защиты клеток от повреждающих воздействий
79. Антиоксидантная система.
Для обеспечения максимальной защиты от окислительного стресса клетки имеют хорошо развитую антиоксидантную систему, которая содержит разные низко- и высокомолекулярные соединения, способные “перехватывать” свободные радикалы или нейтрализовать источник из возникновения.
К высокомолекулярным антиоксидантам относят мембраносвязанные и цитозольные ферменты (супероксиддисмутаза, каталаза, глутатионзависимые пероксидазы и трансферазы).
Низкомолекулярные антиоксиданты разделяют на жирорастворимые (токоферолы, каротиноиды, убихинон) та водорастворимые (аскорбиновая кислота, глутатион, тиоредоксин, билирубин, ураты). Следует отметить, что антиоксиданты бывают внутри и внешнеклеточные.
Постоянное образование прооксидантов в организме уравновешено их дезактивацией антиоксидантной системой. В результате происходит непрерывная регенерация антиоксидантов, необходимая для постоянного поддержания гомеостаза.
При действии разных эндогенных и экзогенных факторов, которые являются причиной окислительного стресса, баланс между антиоксидантной системой и активными формами кислорода в клетках может нарушаться либо в результате снижения уровня антиоксидантов, либо вследствие гиперпродукции активных форм кислорода. Такое состояние нарушенного окислительно-восстановительного статуса клеток, когда активные формы кислорода не могут быть нейтрализованы антиоксидантной системой, называется окислительным стрессом.
При восстановлении кислорода меньшим 4 электронов образуются нестабильные метаболиты – активные формы кислорода. Продукция активных форм кислорода в клетках может увеличиваться в результате действия на них физиологических (гормонов, цитокинов, др.) и нефизиологических стимулов (ионизирующего излучения, ксенобиотиков и т.д.). Среди активных форм кислорода наиболее значимыми являются: супероксидный радикал, пероксид водорода, гидроксильный радикал, синглетний кислород, пероксид.
Ферменты антиоксидантной системы
Все ферменты антиоксидантной системы содержат в активном центре ионы металлов с переменной валентностью, которые в зависимости от условий выступают как окислитель, так и восстановитель.
Супероксиддисмутаза катализирует реакцию дисмутации супероксидных анион – радикалов:
О2.- + О2.- = О2 + Н 2О2
В ходе реакции образовался пероксид водорода, он способен инактивировать СОД, поэтому супероксиддисмутаза всегда «работает» в паре с каталазой, которая быстро и эффективно расщепляет пероксид водорода на абсолютно нейтральные соединения.
Каталаза (КФ 1.11.1.6) – гемопротеин, который катализирует реакцию обезвреживания пероксида водорода, образующегося в результате реакции дисмутации супероксидного радикала:
2H2O2 = 2H2O + O2
Система глутатиона – ферменты антиоксидантной системы
Система глутатиона включает в себя три глутатионзависимых фермента: глутатионпероксидазу (ГПО), глутатионредуктазу (ГР), глутатионтрансферазу (ГТ).
Центральный метаболит системы – трипептид глутатион (GSH) – глутамилцистеинилглицин. GSH-глутатион восстановленный обладает собственной антиоксидантной активностью и выступает в роли кофактора антиоксидантных ферментов, донора водорода, метаболита и субстрата с ферментами системы, а также с супероксиддисмутазой и каталазой, а также ферментов, содержащих тиоловую группу. Глутатион постоянно синтезируется в печени и выделяется в кровь, откуда поступает ко всем тканям, кроме эритроцитов. Выделяется глутатион восстановленный в желчь. Он принимает участие в синтезе белков и нуклеиновых кислот; защищает от активных форм кислорода; восстанавливает и изомеризует дисульфидные связи; влияет на активность ферментов и других белков; поддерживает функции мембран; выполняет некоторые коферментные функции; принимает участие в обмене эйкозаноидов; является резервом цистеина; принимает участие в метаболизме ксенобиотиков; повышает резистентность клеток к вредным воздействиям; влияет на пролиферацию. Система GSH-глутатиона принимает участие в транспорте аминокислот, влияет на функции почечных мембран и резистентность клеток. Считают, что система GSH-глутатиона – один из защитных механизмов против старения организма.
Глутатионпероксидаза катализирует реакции, в которых фермент восстанавливает пероксид водорода до воды, а также восстановление органических гидропероксидов (ROOH) до гидроксипроизводных, и в результате переходит в окисленную дисульфидную форму GS-SG :
2GSH + H2O2 = GS-SG + H2O
2GSH + ROOH = GS-SG + ROH +H2O
Глутатионпероксидаза обезвреживает не только H2O2, но и разные органические липидные пероксилы, которые образуются в организме при активации ПОЛ.
Глутатионредуктаза (КФ 1.8.1.7) – флавопротеин с простетической группой флавинадениндинуклеотидом, состоит из двух идентичных субъединиц. Глутатионредуктаза катализирует реакцию восстановления глутатиона из окисленной его формы GS-SG, а все другие ферменты глутатионсинтетаз используют его: 2NADPH + GS-SG = 2NADP + 2 GSH
Это классический цитозольный фермент всех эукариот.
Глутатионтрансфераза катализирует реакцию:
RX + GSH = HX + GS-SG
Различают глутатионтрансферазы, которые взаимодействуют с катионами (в печени, кишечнике, почках) и анионами (головной мозг, селезенка, легкие, плацента, эритроциты).
Таким образом, для защиты клеток от свободных радикалов организм имеет хорошо развитую антиоксидантную систему.
