- •1.Предмет биохимии. Биохимия в системе естественных наук. Роль биохимии в развитии медицины.
- •2.Аминокислоты. Структура. Явление стереоизомерии. Классификации аминокислот.
- •Ионные формы аминокислот
- •Классификация По радикалу
- •По функциональным группам
- •По классам аминоацил-тРнк-синтетаз
- •По путям биосинтеза
- •По способности организма синтезировать из предшественников
- •По характеру катаболизма у животных
- •3.Аминокислоты. Свойства аминокислот, их поведение в растворе. Методы определения аминокислот.
- •4.Биосинтез аминокислот. Заменимые и незаменимые аминокислоты.
- •5.Непротеиногенные аминокислоты. Производные аминокислот.
- •Соли аминокислот
- •Эфиры аминокислот
- •Азометины
- •6.Катаболизм аминокислот.
- •1. Механизм реакции
- •2. Органоспецифичные аминотрансферазы ант и act
- •3. Биологическое значение трансаминирования
- •4. Диагностическое значение определения аминотрансфераз в клинической практике
- •1. Окислительное дезаминирование
- •2. Непрямое дезаминирование (трансдезаминирование)
- •3. Неокислительное дезамитровате
- •7.Структура и биологические функции пептидов и белков. Классификации белков.
- •8.Первичная структура белков.
- •9.Вторичная структура белков. Структурирующие факторы (силы). Явления денатурации и ренатурации белков.
- •10.Третичная и четвертичная структура белков. Структурирующие факторы (силы). Глобулярные и фибриллярные белки.
- •11.Расщепление белков в желудочно-кишечном тракте. Протеазы. Проферменты, их биологическая роль.
- •12.Катаболизм белков. Убиквитин-зависимая и убиквитин-независимая деградация белков. Цикл мочевины. Мочевая кислота.
- •13.Ферменты. Принципы классификации и номенклатуры. Структура и биологическая роль.
- •14.Активные центры ферментов. Основные представления о механизме ферментативных реакций. Обратимость ферментативных реакций.
- •15. Регуляция активности ферментов. Аллостерические ферменты. Активаторы и ингибиторы ферментов. Принцип обратной связи. Регуляция активности ферментов
- •16.Кинетика ферментативных реакций. Зависимость Михаэлиса-Ментен. График обратных величин Лайнуивера-Берка и его практическое применение.
- •20.Структура моносахаридов. Альдозы и кетозы. Стереоизомеры. Эпимеры. Номенклатура. Моносахариды или простые сахара
- •Стереоизомерия моносахаридов
- •21.Циклические формы моносахаридов. Пиранозы и фуранозы. Стереоизомеры циклических форм моносахаридов. Конформация циклических форм. Пиранозные и фуранозные кольцевые структуры моносахаридов
- •Аномерия
- •22.Структура и свойства олигосахаридов. Их биологическая роль. Олигосахариды
- •23.Структура и свойства полисахаридов. Их биологическая роль. Полисахариды
- •Гомополисахариды
- •24.Гликопротеины, гликозаминогликаны, протеогликаны. Структура и биологическая роль. Гликопротеины и протеогликаны
- •Гликопротеины
- •Общий обзор
- •Локализация
- •Результат
- •29.Окисление пировиноградной кислоты. Функционирование пируватдегидрогеназного комплекса. Роль коферментов. Регуляция процесса.
- •31. Цикл лимонной кислоты. Биологическая роль. Ферментное обеспечение. Энергетический выход. Образование nadh, fadh2 и gtp в цикле лимонной кислоты. Регуляция цикла
- •Глиоксилатный путь катаболизма углеводов. Ферментное обеспечение. Биологическая роль.
- •Окисление внемитохондриального nadh. Челночные системы митохондрий.
- •Пентозомонофосфатный путь катаболизма углеводов. Ферментное обеспечение. Биологическая роль.
- •Глюконеогенез. Биосинтез гликогена из пировиноградной кислоты. Ключевые стадии. Ферментное обеспечение. Регуляция глюконеогенеза.
- •Биосинтез гликогена. Ферментное обеспечение процесса. Реципрокная регуляция гликоген-синтазы и гликоген-фосфорилазы.
- •Регуляция расщепления и синтеза гликогена также взаимосвязана
- •Общие свойства, классификация и номенклатура липидов. Жирные кислоты. Строение и свойства нейтральных жиров. Воска.
- •Строение и свойства фосфоглицеридов.
- •Сфинголипиды. Строение и биологическая роль.
- •41) Строение и св-ва стероидов. Холестерол и его эфиры. Соединения липидов с друг. Биомолекулами. Липопротеины.
- •42) Образование мицелл, монослоёв, бислоёв и липосом фосфолипидами. Их роль. Структура, св-ва и функционирование биологических мембран.
- •47) Биосинтез насыщенных жк. Стр-ра синтазной с-мы для жк. Биосинтез пальмитиновой к-ты.
- •48) Биосинтез ненасыщенных жк. Незаменимые жк. Регуляция биосинтеза жк.
- •49) Биосинтез моно-, ди-, триацилглицеролов.
- •50) Метаболизм глицерофосфолипидов.
- •53. Строение нуклеиновых кислот. Пуриновые и пиримидиновые основания. Углеводные компоненты нуклеиновых кислот.
- •54. Нуклеотиды и их биологическая роль. Структура и функции атф.
- •55. Биосинтез пуриновых нуклеотидов
- •Образование дифосфатов и трифосфатов пуриновых нуклеозидов
- •Синтез пуриновых дезоксирибонуклеотидов
- •56. Пути регенерации и деградации пуринов. Пути регенерации пуриновых нуклеотидов
- •57. Биосинтез пиримидиновых нуклеотидов. Регуляция
- •Далее следуют реакции образования нуклеозидди- и трифосфатов, дезоксирибо-нуклеотидов, а также других типов нуклеотидов – цитидиновых и тимидиновых.
- •Регуляция биосинтеза пиримидинов
- •58. Пути регенерации и деградации пиримидиновых нуклеотидов. Регенерация пиримидиновых нуклеотидов
- •Деградация пиримидиновых нуклеотидов
- •59. Классификация нуклеиновых кислот. Первичная и вторичная структура днк. Значение двуспирального строения днк. Принцип комплиментарности.
- •61.Экспрессия генов
- •62. Оперон
- •63. Регуляция экспрессии генома у эукариот осуществляется на нескольких уровнях:
- •66. Новосинтезированным белкам надо "созреть"
- •70. Жирорастворимые витамины, их биологическая роль.
- •71. Водорастворимые витамины, их биологическая роль.
- •72.Биологическая роль микроэлементов: железа, меди, цинка, кобальта, марганца, йода. Биологическая роль макроэлементов: натрия, калия, кальция, магния, фосфора, серы, хлора.
- •Биогенные элементы
- •67. Фотосинтетический аппарат. Хлорофиллы, каратиноиды и другие пигменты. Световая стадия фотосинтеза. Фотофосфорилирование.
- •68. Темновая стадия фотосинтеза. Цикл Кальвина. Общее уравнение фотосинтеза. Затраты атр и nadph.
- •69.Механизм реализации фотосинтетического пути Хэтча-Слэка (с4). Его биологическая роль. Фотодыхание.
- •73.Биохимические основы адаптации.
- •74.Биотрансформация вредных (токсических) веществ в экосистемах.
- •75.Пути метаболизма ксенобиотиков в организме
- •76. Функционирование микросомальной системы окисления
- •1. Основные ферменты микросомальных
- •2. Функционирование цитохрома р450
- •3. Свойства системы микросомального
- •Широкая субстратная специфичность. Изоформы р450
- •77.Реакции конъюгации в печени.
- •78.Биохимические основы защиты клеток от повреждающих воздействий
- •79. Антиоксидантная система.
73.Биохимические основы адаптации.
Адаптация - одно из наиболее общих и широко применяемых биологических ионятий. Именно благодаря своей широте и многоплановости проблема адаптации утратила четкие границы. Между тем общие закономерности адаптивных процессов, очевидно есть.
Построение общей теории адаптации потребует установления общих закономерностей адаптивных процессов на всех уровнях биологической организации. Если такие закономерности будут установлены, то пути становления и развития биологической организации получат новое освещение, расширятся возможности прогнозирования эволюции отдельных видов и экосистем.
Формы адаптаций, как биологического явления, многообразны, как и многообразны подходы к ее изучению. В современной биологии накоплено огромное количество материала, посвященного описанию адаптаций организмов к различным условиям обитания. Как правило, проблема адаптации решается методами классической, «описательной», биологии. Между тем любые изменения физиологии и морфологии организмов имеют биохимическую основу, а биохимические адаптации не менее разнообразны, чем внешние адаптивные признаки.
Известны работы по проблемам стратегии биохимической адаптации (Хочачка, Самеро, 1977, 1988), посвященные оценке влияния отдельных факторов среды в постановочных опытах (температура, рН, осмотическое давление и т.д.) на конкретные ферменты обмена и дыхания. Выбор биохимических объектов для экологических исследований не всегда оправдан, так как их свойства могут зависеть от физиологического состояния животного.
Другим направлением в современных экологических исследованиях являются работы, посвященные оценке влияния ухудшающихся условий существования на функционирование живых систем. Использование при этом биохимических маркеров (глутатион, мсталлотсонеины, каратиноиды, ферменты углеводного обмена и т.д.) позволяет оценить степень клеточного повреждения под влиянием неблагоприятных факторов среды (Лукьянова, 2001).
Современный уровень развития естествознания убедительно доказывает, что в основе всех приспособительных изменений биологических систем лежат молекулярные процессы (Davies, Kratzer, 1996). В первую очередь на флюктуации параметров внешней среды реагируют ферменты. Особое место среди ферментов занимают холинэстеразы (ХЭ), которые по важности выполняемых ими функций относятся к конститутивным ферментам, а их свойства не зависят от физиологического состояния особи (Ленинджер, 1976; Эпштейн, 1992). В связи с ключевой ролью холинэстераз в процессе передачи нервного импульса модуляция активности фермента под действием различных соединений издавна является предметом исследования фармакологов, токсикологов, биохимиков. Однако работы, посвященные холинэстера-зам гидробионтов, касаются в основном свойств фермента некоторых видов головоногих моллюсков и ограниченного количества рыб (Бресткин и др., 1997). В последние годы активно развивается направление использования холинэстераз при оценке степени загрязнения среды обитания гидробионтов пестицидами (Caraville, 2000), фосфорорганическими соединениями (Рауепе et al., 1996) и солями тяжелых металлов (Somero, 1997). В то же время до настоящего исследования проблема определения механизмов биохимической адаптации холинэстераз гидробионтов не исследовалась.
В связи с указанным комплексное исследование свойств холинэстераз гидробионтов (субстратной специфичности, субстратно-ингибиторных свойств и хроматографических характеристик) различных таксономических рангов (млекопитающих, рыб, беспозвоночных) является актуальным. Установление закономерностей свойств холинэстераз от таксономического положения и среды обитания животного представляет интерес для науки и позволяет определить стратегию биохимической адаптации холинэргических систем у гидробионтов.
Целью исследования — комплексное изучение свойств холинэстераз и использование кинетических характеристик ферментативного катализа для определения стратегии биохимической адаптации у гидробионтов.
