- •1.Предмет биохимии. Биохимия в системе естественных наук. Роль биохимии в развитии медицины.
- •2.Аминокислоты. Структура. Явление стереоизомерии. Классификации аминокислот.
- •Ионные формы аминокислот
- •Классификация По радикалу
- •По функциональным группам
- •По классам аминоацил-тРнк-синтетаз
- •По путям биосинтеза
- •По способности организма синтезировать из предшественников
- •По характеру катаболизма у животных
- •3.Аминокислоты. Свойства аминокислот, их поведение в растворе. Методы определения аминокислот.
- •4.Биосинтез аминокислот. Заменимые и незаменимые аминокислоты.
- •5.Непротеиногенные аминокислоты. Производные аминокислот.
- •Соли аминокислот
- •Эфиры аминокислот
- •Азометины
- •6.Катаболизм аминокислот.
- •1. Механизм реакции
- •2. Органоспецифичные аминотрансферазы ант и act
- •3. Биологическое значение трансаминирования
- •4. Диагностическое значение определения аминотрансфераз в клинической практике
- •1. Окислительное дезаминирование
- •2. Непрямое дезаминирование (трансдезаминирование)
- •3. Неокислительное дезамитровате
- •7.Структура и биологические функции пептидов и белков. Классификации белков.
- •8.Первичная структура белков.
- •9.Вторичная структура белков. Структурирующие факторы (силы). Явления денатурации и ренатурации белков.
- •10.Третичная и четвертичная структура белков. Структурирующие факторы (силы). Глобулярные и фибриллярные белки.
- •11.Расщепление белков в желудочно-кишечном тракте. Протеазы. Проферменты, их биологическая роль.
- •12.Катаболизм белков. Убиквитин-зависимая и убиквитин-независимая деградация белков. Цикл мочевины. Мочевая кислота.
- •13.Ферменты. Принципы классификации и номенклатуры. Структура и биологическая роль.
- •14.Активные центры ферментов. Основные представления о механизме ферментативных реакций. Обратимость ферментативных реакций.
- •15. Регуляция активности ферментов. Аллостерические ферменты. Активаторы и ингибиторы ферментов. Принцип обратной связи. Регуляция активности ферментов
- •16.Кинетика ферментативных реакций. Зависимость Михаэлиса-Ментен. График обратных величин Лайнуивера-Берка и его практическое применение.
- •20.Структура моносахаридов. Альдозы и кетозы. Стереоизомеры. Эпимеры. Номенклатура. Моносахариды или простые сахара
- •Стереоизомерия моносахаридов
- •21.Циклические формы моносахаридов. Пиранозы и фуранозы. Стереоизомеры циклических форм моносахаридов. Конформация циклических форм. Пиранозные и фуранозные кольцевые структуры моносахаридов
- •Аномерия
- •22.Структура и свойства олигосахаридов. Их биологическая роль. Олигосахариды
- •23.Структура и свойства полисахаридов. Их биологическая роль. Полисахариды
- •Гомополисахариды
- •24.Гликопротеины, гликозаминогликаны, протеогликаны. Структура и биологическая роль. Гликопротеины и протеогликаны
- •Гликопротеины
- •Общий обзор
- •Локализация
- •Результат
- •29.Окисление пировиноградной кислоты. Функционирование пируватдегидрогеназного комплекса. Роль коферментов. Регуляция процесса.
- •31. Цикл лимонной кислоты. Биологическая роль. Ферментное обеспечение. Энергетический выход. Образование nadh, fadh2 и gtp в цикле лимонной кислоты. Регуляция цикла
- •Глиоксилатный путь катаболизма углеводов. Ферментное обеспечение. Биологическая роль.
- •Окисление внемитохондриального nadh. Челночные системы митохондрий.
- •Пентозомонофосфатный путь катаболизма углеводов. Ферментное обеспечение. Биологическая роль.
- •Глюконеогенез. Биосинтез гликогена из пировиноградной кислоты. Ключевые стадии. Ферментное обеспечение. Регуляция глюконеогенеза.
- •Биосинтез гликогена. Ферментное обеспечение процесса. Реципрокная регуляция гликоген-синтазы и гликоген-фосфорилазы.
- •Регуляция расщепления и синтеза гликогена также взаимосвязана
- •Общие свойства, классификация и номенклатура липидов. Жирные кислоты. Строение и свойства нейтральных жиров. Воска.
- •Строение и свойства фосфоглицеридов.
- •Сфинголипиды. Строение и биологическая роль.
- •41) Строение и св-ва стероидов. Холестерол и его эфиры. Соединения липидов с друг. Биомолекулами. Липопротеины.
- •42) Образование мицелл, монослоёв, бислоёв и липосом фосфолипидами. Их роль. Структура, св-ва и функционирование биологических мембран.
- •47) Биосинтез насыщенных жк. Стр-ра синтазной с-мы для жк. Биосинтез пальмитиновой к-ты.
- •48) Биосинтез ненасыщенных жк. Незаменимые жк. Регуляция биосинтеза жк.
- •49) Биосинтез моно-, ди-, триацилглицеролов.
- •50) Метаболизм глицерофосфолипидов.
- •53. Строение нуклеиновых кислот. Пуриновые и пиримидиновые основания. Углеводные компоненты нуклеиновых кислот.
- •54. Нуклеотиды и их биологическая роль. Структура и функции атф.
- •55. Биосинтез пуриновых нуклеотидов
- •Образование дифосфатов и трифосфатов пуриновых нуклеозидов
- •Синтез пуриновых дезоксирибонуклеотидов
- •56. Пути регенерации и деградации пуринов. Пути регенерации пуриновых нуклеотидов
- •57. Биосинтез пиримидиновых нуклеотидов. Регуляция
- •Далее следуют реакции образования нуклеозидди- и трифосфатов, дезоксирибо-нуклеотидов, а также других типов нуклеотидов – цитидиновых и тимидиновых.
- •Регуляция биосинтеза пиримидинов
- •58. Пути регенерации и деградации пиримидиновых нуклеотидов. Регенерация пиримидиновых нуклеотидов
- •Деградация пиримидиновых нуклеотидов
- •59. Классификация нуклеиновых кислот. Первичная и вторичная структура днк. Значение двуспирального строения днк. Принцип комплиментарности.
- •61.Экспрессия генов
- •62. Оперон
- •63. Регуляция экспрессии генома у эукариот осуществляется на нескольких уровнях:
- •66. Новосинтезированным белкам надо "созреть"
- •70. Жирорастворимые витамины, их биологическая роль.
- •71. Водорастворимые витамины, их биологическая роль.
- •72.Биологическая роль микроэлементов: железа, меди, цинка, кобальта, марганца, йода. Биологическая роль макроэлементов: натрия, калия, кальция, магния, фосфора, серы, хлора.
- •Биогенные элементы
- •67. Фотосинтетический аппарат. Хлорофиллы, каратиноиды и другие пигменты. Световая стадия фотосинтеза. Фотофосфорилирование.
- •68. Темновая стадия фотосинтеза. Цикл Кальвина. Общее уравнение фотосинтеза. Затраты атр и nadph.
- •69.Механизм реализации фотосинтетического пути Хэтча-Слэка (с4). Его биологическая роль. Фотодыхание.
- •73.Биохимические основы адаптации.
- •74.Биотрансформация вредных (токсических) веществ в экосистемах.
- •75.Пути метаболизма ксенобиотиков в организме
- •76. Функционирование микросомальной системы окисления
- •1. Основные ферменты микросомальных
- •2. Функционирование цитохрома р450
- •3. Свойства системы микросомального
- •Широкая субстратная специфичность. Изоформы р450
- •77.Реакции конъюгации в печени.
- •78.Биохимические основы защиты клеток от повреждающих воздействий
- •79. Антиоксидантная система.
66. Новосинтезированным белкам надо "созреть"
После того как пептидная цепь отходит от рибосомы она должна принять свою биологически активную форму, т.е. свернуться определенным образом, связать какие-либо группы и т.п. Реакции превращения полипептида в активный белок называются процессинг или посттрансляционная модификация белков.
Посттрансляционная модификация белков
К основным реакциям процессинга относятся:
1. Удаление с N-конца метионина или даже нескольких аминокислот специфичными аминопептидазами.
2. Образование дисульфидных мостиков между остатками цистеина.
3. Частичный протеолиз – удаление части пептидной цепи, как в случае с инсулином или протеолитическими ферментами ЖКТ.
4. Присоединение химической группы к аминокислотным остаткам белковой цепи:фосфорной кислоты – например, фосфорилирование по аминокислотам Серину, Треонину, Тирозину используется при регуляции активности ферментов или для связывания ионов кальция,
карбоксильной группы – например, при участии витамина К происходит γ-карбоксилирование глутамата в составе протромбина, проконвертина, фактора Стюарта, Кристмаса, что позволяет связывать ионы кальция при инициации свертывания крови,
метильной группы – например, метилирование аргинина и лизина в составе гистонов используется для регуляции активности генома,
гидроксильной группы – например, образование гидроксипролина и гидроксилизина необходимо для созревания молекул коллагена при участии витамина С,йода – например, в тиреоглобулине присоединение йода необходимо для образования предшественников тиреоидных гормонов йодтиронинов,
5. Включение простетической группы:
углеводных остатков – например, гликирование требуется при синтезе гликопротеинов.
гема – например, при синтезе гемоглобина, миоглобина, цитохромов, каталазы,витаминных коферментов – биотина, ФАД, пиридоксальфосфата и т.п.
6. Объединение протомеров в единый олигомерный белок, например, гемоглобин, коллаген, лактатдегидрогеназа, креатинкиназа.
Фолдинг белков
Фолдинг – это процесс укладки вытянутой полипептидной цепи в правильную трехмерную пространственную структуру. Для обеспечения фолдинга используется группа вспомогательных белков под названием шапероны (chaperon, франц. – спутник, нянька). Они предотвращают взаимодействие новосинтезированных белков друг с другом, изолируют гидрофобные участки белков от цитоплазмы и "убирают" их внутрь молекулы, правильно располагают белковые домены.
В целом шапероны способствуют переходу структуры белков от первичного уровня до третичного и четвертичного.
При нарушении функции шаперонов и отсутствии фолдинга в клетке формируются белковые отложения – развивается амилоидоз. Насчитывают около 15 вариантов амилоидоза.
70. Жирорастворимые витамины, их биологическая роль.
Витамин А (антиксерофтальмический) – ретинол, химическая структура которого представлена -иононовым кольцом и двумя остатками изопрена; потребность его в организме составляет 2,5 – 3,0 мг в сутки.
Основными источниками витамина А в пище является печень, яичный желток и рыбий жир, провитамина А – морковь, томаты.
Выделены два вида витамина А: витамин А1 – из печени морских рыб и А2 – из печени пресноводных рыб.
Ретинол (А1)
Отличия в строении Ретинола (А1) и Ретинола2 (А2)
Ретинол и ретиналь участвует в работе родопсиновой фоторецепторной системы (млекопитающие, птицы, амфибии, морские рыбы), а ретинол2 и ретиналь2 – порфиропсиновой фоторецепторной системе (пресноводные рыбы).
Из каротина, содержащегося в растениях и овощах образуется витамин А2.
Витамин А накапливается в печени. В плазме крови здоровых людей содержание его равно в среднем 50 мкг в 100 мл плазмы. Ретинол транспортируется, соединяясь с 1-глобулинами и с альбуминами.
Витамин А участвует в процессах зрения, входя в состав родопсина, обусловливающего сумеречное зрение, участвует в окислительно-восстановительных реакциях в организме, изменяет проницаемость мембран клеток и тканей, усиливает биосинтез гликопротеинов мембран клеток.
Гипо- и авитаминоз витамина А выражается отсутствием сумеречного зрения («куриная слепота»), сухость кожи и слизистых, что может приводить в дальнейшем к кератомаляции.
Витамины D (антирахитические) по химической природе представляют собой кальциферол (D2) и холекальциферол (D3) (производные циклопентанпергидрофенантрена), суточная потребность которых в организме человека составляет 0,025 мг. Выделеный на ранних этапах витамин D1 при более детальном изучении оказался смесью кальциферолов и других стеринов. В настоящее время термин не используется.
Из витамина D3 под действием 25-гидроксилазы (в печени) и 1-гидроксилазы (в почках) синтезируется гормон кальцитриол, регулирующий обмен кальция и фосфора в организме.
Витамин D3 образуется в коже под влиянием ультрафиолетовых лучей из холестерина и поступает с рыбьим жиром, сливочным маслом, желтком яиц, печенью.
Кальциферол (D2) и холекальциферол (D3)
Витамин D3 регулирует обмен кальция и фосфора в организме, участвуя в биосинтезе кальций-связывающего белка в слизистой желудочно-кишечного тракта, тем самым способствуя всасыванию ионов кальция и фосфора из пищи.
Гипо- и авитаминоз витамина D3: в детском возрасте – рахит, у взрослых – снижение ионов кальция в крови, что приводит к:
повышению нервно-мышечной возбудимости,
инактивации кальций-зависимых ферментов,
нарушению свертывания крови,
остеомаляция.
Витамин Е (антистерильный) по химической природе представляет собой -, -, -, -токоферолы, суточная потребность которого в организме составляет 5 мг.
Источники: растительные масла (подсолнечное, кукурузное и др.), семена злаков, капуста, мясо, сливочное масло, яичный желток.
Витамин Е влияет на репродуктивную функцию и обмен селена в организме, выполняет антиоксидантную роль, защищая мембраны от перекисного окисления липидов, предотвращая тем самым гемолиз эритроцитов.
Гипо- и авитаминоз Е: у детей – гемолитическая желтуха, у взрослых – дегенеративные процессы в репродуктивных органах, выкидыши у беременных, жировая дегенерация печени и дистрофические изменения в скелетных мышцах.
α-токоферол
Витамин К (антигеморрагический) по химической природе представляет собой производное нафтохинонов, суточная потребность которого в организме составляет 1 мг.
Источники: капуста, ягоды рябины, арахисовое масло, тыква, томаты, печень свиньи.
Витамин К1 (выделен из люцерны)
Витамин К2 (выделен из рыбокостной муки) и менадион (аналог витамина К)
Витамин К участвует в свертывании крови, являясь кофактором -глутамилкарбоксилазы, которая катализирует превращение глутаминовой кислоты в -карбоксиглутамат, необходимый для биосинтеза четырех факторов свертывания крови: ф-II – протромбина, ф-VII – проконвертина, ф-IX – ф.Кристмаса и ф-X – ф.Стюарта-Проуэра.
Гипо- и авитаминоз К приводит к снижению свертываемости крови вследствие нарушения биосинтеза -карбоксиглутамата, а также к капиллярным и паренхиматозным кровотечениям. Широкое практическое применение нашел синтезированный препарат «викасол» (бисульфитное соединение метилнафтохинона, растворимое в воде). Он является производным витамина К3 (метилбензохинона).
