- •1.Предмет биохимии. Биохимия в системе естественных наук. Роль биохимии в развитии медицины.
- •2.Аминокислоты. Структура. Явление стереоизомерии. Классификации аминокислот.
- •Ионные формы аминокислот
- •Классификация По радикалу
- •По функциональным группам
- •По классам аминоацил-тРнк-синтетаз
- •По путям биосинтеза
- •По способности организма синтезировать из предшественников
- •По характеру катаболизма у животных
- •3.Аминокислоты. Свойства аминокислот, их поведение в растворе. Методы определения аминокислот.
- •4.Биосинтез аминокислот. Заменимые и незаменимые аминокислоты.
- •5.Непротеиногенные аминокислоты. Производные аминокислот.
- •Соли аминокислот
- •Эфиры аминокислот
- •Азометины
- •6.Катаболизм аминокислот.
- •1. Механизм реакции
- •2. Органоспецифичные аминотрансферазы ант и act
- •3. Биологическое значение трансаминирования
- •4. Диагностическое значение определения аминотрансфераз в клинической практике
- •1. Окислительное дезаминирование
- •2. Непрямое дезаминирование (трансдезаминирование)
- •3. Неокислительное дезамитровате
- •7.Структура и биологические функции пептидов и белков. Классификации белков.
- •8.Первичная структура белков.
- •9.Вторичная структура белков. Структурирующие факторы (силы). Явления денатурации и ренатурации белков.
- •10.Третичная и четвертичная структура белков. Структурирующие факторы (силы). Глобулярные и фибриллярные белки.
- •11.Расщепление белков в желудочно-кишечном тракте. Протеазы. Проферменты, их биологическая роль.
- •12.Катаболизм белков. Убиквитин-зависимая и убиквитин-независимая деградация белков. Цикл мочевины. Мочевая кислота.
- •13.Ферменты. Принципы классификации и номенклатуры. Структура и биологическая роль.
- •14.Активные центры ферментов. Основные представления о механизме ферментативных реакций. Обратимость ферментативных реакций.
- •15. Регуляция активности ферментов. Аллостерические ферменты. Активаторы и ингибиторы ферментов. Принцип обратной связи. Регуляция активности ферментов
- •16.Кинетика ферментативных реакций. Зависимость Михаэлиса-Ментен. График обратных величин Лайнуивера-Берка и его практическое применение.
- •20.Структура моносахаридов. Альдозы и кетозы. Стереоизомеры. Эпимеры. Номенклатура. Моносахариды или простые сахара
- •Стереоизомерия моносахаридов
- •21.Циклические формы моносахаридов. Пиранозы и фуранозы. Стереоизомеры циклических форм моносахаридов. Конформация циклических форм. Пиранозные и фуранозные кольцевые структуры моносахаридов
- •Аномерия
- •22.Структура и свойства олигосахаридов. Их биологическая роль. Олигосахариды
- •23.Структура и свойства полисахаридов. Их биологическая роль. Полисахариды
- •Гомополисахариды
- •24.Гликопротеины, гликозаминогликаны, протеогликаны. Структура и биологическая роль. Гликопротеины и протеогликаны
- •Гликопротеины
- •Общий обзор
- •Локализация
- •Результат
- •29.Окисление пировиноградной кислоты. Функционирование пируватдегидрогеназного комплекса. Роль коферментов. Регуляция процесса.
- •31. Цикл лимонной кислоты. Биологическая роль. Ферментное обеспечение. Энергетический выход. Образование nadh, fadh2 и gtp в цикле лимонной кислоты. Регуляция цикла
- •Глиоксилатный путь катаболизма углеводов. Ферментное обеспечение. Биологическая роль.
- •Окисление внемитохондриального nadh. Челночные системы митохондрий.
- •Пентозомонофосфатный путь катаболизма углеводов. Ферментное обеспечение. Биологическая роль.
- •Глюконеогенез. Биосинтез гликогена из пировиноградной кислоты. Ключевые стадии. Ферментное обеспечение. Регуляция глюконеогенеза.
- •Биосинтез гликогена. Ферментное обеспечение процесса. Реципрокная регуляция гликоген-синтазы и гликоген-фосфорилазы.
- •Регуляция расщепления и синтеза гликогена также взаимосвязана
- •Общие свойства, классификация и номенклатура липидов. Жирные кислоты. Строение и свойства нейтральных жиров. Воска.
- •Строение и свойства фосфоглицеридов.
- •Сфинголипиды. Строение и биологическая роль.
- •41) Строение и св-ва стероидов. Холестерол и его эфиры. Соединения липидов с друг. Биомолекулами. Липопротеины.
- •42) Образование мицелл, монослоёв, бислоёв и липосом фосфолипидами. Их роль. Структура, св-ва и функционирование биологических мембран.
- •47) Биосинтез насыщенных жк. Стр-ра синтазной с-мы для жк. Биосинтез пальмитиновой к-ты.
- •48) Биосинтез ненасыщенных жк. Незаменимые жк. Регуляция биосинтеза жк.
- •49) Биосинтез моно-, ди-, триацилглицеролов.
- •50) Метаболизм глицерофосфолипидов.
- •53. Строение нуклеиновых кислот. Пуриновые и пиримидиновые основания. Углеводные компоненты нуклеиновых кислот.
- •54. Нуклеотиды и их биологическая роль. Структура и функции атф.
- •55. Биосинтез пуриновых нуклеотидов
- •Образование дифосфатов и трифосфатов пуриновых нуклеозидов
- •Синтез пуриновых дезоксирибонуклеотидов
- •56. Пути регенерации и деградации пуринов. Пути регенерации пуриновых нуклеотидов
- •57. Биосинтез пиримидиновых нуклеотидов. Регуляция
- •Далее следуют реакции образования нуклеозидди- и трифосфатов, дезоксирибо-нуклеотидов, а также других типов нуклеотидов – цитидиновых и тимидиновых.
- •Регуляция биосинтеза пиримидинов
- •58. Пути регенерации и деградации пиримидиновых нуклеотидов. Регенерация пиримидиновых нуклеотидов
- •Деградация пиримидиновых нуклеотидов
- •59. Классификация нуклеиновых кислот. Первичная и вторичная структура днк. Значение двуспирального строения днк. Принцип комплиментарности.
- •61.Экспрессия генов
- •62. Оперон
- •63. Регуляция экспрессии генома у эукариот осуществляется на нескольких уровнях:
- •66. Новосинтезированным белкам надо "созреть"
- •70. Жирорастворимые витамины, их биологическая роль.
- •71. Водорастворимые витамины, их биологическая роль.
- •72.Биологическая роль микроэлементов: железа, меди, цинка, кобальта, марганца, йода. Биологическая роль макроэлементов: натрия, калия, кальция, магния, фосфора, серы, хлора.
- •Биогенные элементы
- •67. Фотосинтетический аппарат. Хлорофиллы, каратиноиды и другие пигменты. Световая стадия фотосинтеза. Фотофосфорилирование.
- •68. Темновая стадия фотосинтеза. Цикл Кальвина. Общее уравнение фотосинтеза. Затраты атр и nadph.
- •69.Механизм реализации фотосинтетического пути Хэтча-Слэка (с4). Его биологическая роль. Фотодыхание.
- •73.Биохимические основы адаптации.
- •74.Биотрансформация вредных (токсических) веществ в экосистемах.
- •75.Пути метаболизма ксенобиотиков в организме
- •76. Функционирование микросомальной системы окисления
- •1. Основные ферменты микросомальных
- •2. Функционирование цитохрома р450
- •3. Свойства системы микросомального
- •Широкая субстратная специфичность. Изоформы р450
- •77.Реакции конъюгации в печени.
- •78.Биохимические основы защиты клеток от повреждающих воздействий
- •79. Антиоксидантная система.
53. Строение нуклеиновых кислот. Пуриновые и пиримидиновые основания. Углеводные компоненты нуклеиновых кислот.
Нуклеи́новая кисло́та — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.
Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты (фосфодиэфирная связь). Поскольку в нуклеотидах существует только два типа гетероциклических молекул, рибоза и дезоксирибоза, то и имеется лишь два вида нуклеиновых кислот — дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК).
Мономерные формы также встречаются в клетках и играют важную роль в процессах передачи сигналов или запасании энергии. Наиболее известный мономер РНК — АТФ, аденозинтрифосфорная кислота, важнейший аккумулятор энергии в клетке.
ДНК (дезоксирибонуклеиновая кислота). Сахар — дезоксирибоза, азотистые основания: пуриновые — гуанин (G), аденин (A), пиримидиновые — тимин (T) и цитозин (C). ДНК часто состоит из двух полинуклеотидных цепей, направленных антипараллельно.
РНК (рибонуклеиновая кислота). Сахар — рибоза, азотистые основания: пуриновые — гуанин (G), аденин (A), пиримидиновые урацил (U) и цитозин (C). Структура полинуклеотидной цепочки аналогична таковой в ДНК. Из-за особенностей рибозы молекулы РНК часто имеют различные вторичные и третичные структуры, образуя комплементарные участки между разными цепями.
Азотистое основание |
|
|
|
|
|
54. Нуклеотиды и их биологическая роль. Структура и функции атф.
Нуклеотиды являются сложными эфирами нуклеозидов и фосфорных кислот. Нуклеозиды, в свою очередь, являются N-гликозидами, содержащими гетероциклический фрагмент, связанный через атом азота с C-1 атомом остатка сахара. В природе наиболее распространены нуклеотиды, являющиеся β-N-гликозидами пуринов или пиримидинов и пентоз — D-рибозы или D-2-рибозы. В зависимости от структуры пентозы различают рибонуклеотиды и дезоксирибонуклеотиды, которые являются мономерами молекул сложных биологических полимеров (полинуклеотидов) — соответственно РНК или ДНК. Фосфатный остаток в нуклеотидах обычно образует сложноэфирную связь с 2'-, 3'- или 5'-гидроксильными группами рибонуклеозидов.
Биологическая роль:
1. Выступают в роли коферментов (ФАД, ФМН, НАД+, НАДФ+)
2. Циклические мононуклеотиды являются вторичными посредниками при действии гормонов и других сигналов(цАМФ, цГМФ).
3. Аллостерические регуляторы активности ферментов.
4. Являются мономерами в составе нуклеиновых кислот, связанные 3'-5'- фосфодиэфирными связями.
АТФ - нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах.
Химически АТФ представляет собой трифосфорный эфир аденозина, который является производным аденина и рибозы.
Пуриновое азотистое основание — аденин — соединяется β-N-гликозидной связью с 1'-углеродом рибозы. К 5'-углероду рибозы последовательно присоединяются три молекулы фосфорной кислоты, обозначаемые соответственно буквами: α, β и γ.
Функции АТФ:
Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Всё это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения.
Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот.
Кроме того, АТФ отводится важное место в регуляции множества биохимических процессов. Являясь аллостерическим эффектором ряда ферментов, АТФ, присоединяясь к их регуляторным центрам, усиливает или подавляет их активность.
АТФ является также непосредственным предшественником синтеза циклического аденозинмонофосфата — вторичного посредника передачи в клетку гормонального сигнала.
Также известна роль АТФ в качестве медиатора в синапсах.

Аденин
Гуанин
Тимин
Цитозин
Урацил