- •1.Предмет биохимии. Биохимия в системе естественных наук. Роль биохимии в развитии медицины.
- •2.Аминокислоты. Структура. Явление стереоизомерии. Классификации аминокислот.
- •Ионные формы аминокислот
- •Классификация По радикалу
- •По функциональным группам
- •По классам аминоацил-тРнк-синтетаз
- •По путям биосинтеза
- •По способности организма синтезировать из предшественников
- •По характеру катаболизма у животных
- •3.Аминокислоты. Свойства аминокислот, их поведение в растворе. Методы определения аминокислот.
- •4.Биосинтез аминокислот. Заменимые и незаменимые аминокислоты.
- •5.Непротеиногенные аминокислоты. Производные аминокислот.
- •Соли аминокислот
- •Эфиры аминокислот
- •Азометины
- •6.Катаболизм аминокислот.
- •1. Механизм реакции
- •2. Органоспецифичные аминотрансферазы ант и act
- •3. Биологическое значение трансаминирования
- •4. Диагностическое значение определения аминотрансфераз в клинической практике
- •1. Окислительное дезаминирование
- •2. Непрямое дезаминирование (трансдезаминирование)
- •3. Неокислительное дезамитровате
- •7.Структура и биологические функции пептидов и белков. Классификации белков.
- •8.Первичная структура белков.
- •9.Вторичная структура белков. Структурирующие факторы (силы). Явления денатурации и ренатурации белков.
- •10.Третичная и четвертичная структура белков. Структурирующие факторы (силы). Глобулярные и фибриллярные белки.
- •11.Расщепление белков в желудочно-кишечном тракте. Протеазы. Проферменты, их биологическая роль.
- •12.Катаболизм белков. Убиквитин-зависимая и убиквитин-независимая деградация белков. Цикл мочевины. Мочевая кислота.
- •13.Ферменты. Принципы классификации и номенклатуры. Структура и биологическая роль.
- •14.Активные центры ферментов. Основные представления о механизме ферментативных реакций. Обратимость ферментативных реакций.
- •15. Регуляция активности ферментов. Аллостерические ферменты. Активаторы и ингибиторы ферментов. Принцип обратной связи. Регуляция активности ферментов
- •16.Кинетика ферментативных реакций. Зависимость Михаэлиса-Ментен. График обратных величин Лайнуивера-Берка и его практическое применение.
- •20.Структура моносахаридов. Альдозы и кетозы. Стереоизомеры. Эпимеры. Номенклатура. Моносахариды или простые сахара
- •Стереоизомерия моносахаридов
- •21.Циклические формы моносахаридов. Пиранозы и фуранозы. Стереоизомеры циклических форм моносахаридов. Конформация циклических форм. Пиранозные и фуранозные кольцевые структуры моносахаридов
- •Аномерия
- •22.Структура и свойства олигосахаридов. Их биологическая роль. Олигосахариды
- •23.Структура и свойства полисахаридов. Их биологическая роль. Полисахариды
- •Гомополисахариды
- •24.Гликопротеины, гликозаминогликаны, протеогликаны. Структура и биологическая роль. Гликопротеины и протеогликаны
- •Гликопротеины
- •Общий обзор
- •Локализация
- •Результат
- •29.Окисление пировиноградной кислоты. Функционирование пируватдегидрогеназного комплекса. Роль коферментов. Регуляция процесса.
- •31. Цикл лимонной кислоты. Биологическая роль. Ферментное обеспечение. Энергетический выход. Образование nadh, fadh2 и gtp в цикле лимонной кислоты. Регуляция цикла
- •Глиоксилатный путь катаболизма углеводов. Ферментное обеспечение. Биологическая роль.
- •Окисление внемитохондриального nadh. Челночные системы митохондрий.
- •Пентозомонофосфатный путь катаболизма углеводов. Ферментное обеспечение. Биологическая роль.
- •Глюконеогенез. Биосинтез гликогена из пировиноградной кислоты. Ключевые стадии. Ферментное обеспечение. Регуляция глюконеогенеза.
- •Биосинтез гликогена. Ферментное обеспечение процесса. Реципрокная регуляция гликоген-синтазы и гликоген-фосфорилазы.
- •Регуляция расщепления и синтеза гликогена также взаимосвязана
- •Общие свойства, классификация и номенклатура липидов. Жирные кислоты. Строение и свойства нейтральных жиров. Воска.
- •Строение и свойства фосфоглицеридов.
- •Сфинголипиды. Строение и биологическая роль.
- •41) Строение и св-ва стероидов. Холестерол и его эфиры. Соединения липидов с друг. Биомолекулами. Липопротеины.
- •42) Образование мицелл, монослоёв, бислоёв и липосом фосфолипидами. Их роль. Структура, св-ва и функционирование биологических мембран.
- •47) Биосинтез насыщенных жк. Стр-ра синтазной с-мы для жк. Биосинтез пальмитиновой к-ты.
- •48) Биосинтез ненасыщенных жк. Незаменимые жк. Регуляция биосинтеза жк.
- •49) Биосинтез моно-, ди-, триацилглицеролов.
- •50) Метаболизм глицерофосфолипидов.
- •53. Строение нуклеиновых кислот. Пуриновые и пиримидиновые основания. Углеводные компоненты нуклеиновых кислот.
- •54. Нуклеотиды и их биологическая роль. Структура и функции атф.
- •55. Биосинтез пуриновых нуклеотидов
- •Образование дифосфатов и трифосфатов пуриновых нуклеозидов
- •Синтез пуриновых дезоксирибонуклеотидов
- •56. Пути регенерации и деградации пуринов. Пути регенерации пуриновых нуклеотидов
- •57. Биосинтез пиримидиновых нуклеотидов. Регуляция
- •Далее следуют реакции образования нуклеозидди- и трифосфатов, дезоксирибо-нуклеотидов, а также других типов нуклеотидов – цитидиновых и тимидиновых.
- •Регуляция биосинтеза пиримидинов
- •58. Пути регенерации и деградации пиримидиновых нуклеотидов. Регенерация пиримидиновых нуклеотидов
- •Деградация пиримидиновых нуклеотидов
- •59. Классификация нуклеиновых кислот. Первичная и вторичная структура днк. Значение двуспирального строения днк. Принцип комплиментарности.
- •61.Экспрессия генов
- •62. Оперон
- •63. Регуляция экспрессии генома у эукариот осуществляется на нескольких уровнях:
- •66. Новосинтезированным белкам надо "созреть"
- •70. Жирорастворимые витамины, их биологическая роль.
- •71. Водорастворимые витамины, их биологическая роль.
- •72.Биологическая роль микроэлементов: железа, меди, цинка, кобальта, марганца, йода. Биологическая роль макроэлементов: натрия, калия, кальция, магния, фосфора, серы, хлора.
- •Биогенные элементы
- •67. Фотосинтетический аппарат. Хлорофиллы, каратиноиды и другие пигменты. Световая стадия фотосинтеза. Фотофосфорилирование.
- •68. Темновая стадия фотосинтеза. Цикл Кальвина. Общее уравнение фотосинтеза. Затраты атр и nadph.
- •69.Механизм реализации фотосинтетического пути Хэтча-Слэка (с4). Его биологическая роль. Фотодыхание.
- •73.Биохимические основы адаптации.
- •74.Биотрансформация вредных (токсических) веществ в экосистемах.
- •75.Пути метаболизма ксенобиотиков в организме
- •76. Функционирование микросомальной системы окисления
- •1. Основные ферменты микросомальных
- •2. Функционирование цитохрома р450
- •3. Свойства системы микросомального
- •Широкая субстратная специфичность. Изоформы р450
- •77.Реакции конъюгации в печени.
- •78.Биохимические основы защиты клеток от повреждающих воздействий
- •79. Антиоксидантная система.
Общий обзор
Гликолитический путь представляет собой 10 последовательных реакций, каждая из которых катализируется отдельным ферментом.
Процесс гликолиза условно можно разделить на два этапа. Первый этап, протекающий с расходом энергии 2 молекул АТФ, заключается в расщеплении молекулы глюкозы на 2 молекулы глицеральдегид-3-фосфата. На втором этапе происходит НАД-зависимое окисление глицеральдегид-3-фосфата, сопровождающееся синтезом АТФ. Сам по себе гликолиз является полностью анаэробным процессом, то есть не требует для протекания реакций присутствия кислорода.
Гликолиз — один из древнейших метаболических процессов, известный почти у всех живых организмов. Предположительно гликолиз появился более 3,5 млрд лет назад у первичныхпрокариотов.
Локализация
В клетках эукариотических организмов десять ферментов, катализирующих распад глюкозы до ПВК, находятся в цитозоле, все остальные ферменты, имеющие отношение к энергетическому обмену, — в митохондриях и хлоропластах. Поступление глюкозы в клетку осуществляется двумя путями: натрий-зависимый симпорт (преимущественно дляэнтероцитов и эпителия почечных канальцев) и облегчённая диффузия глюкозы с помощью белков-переносчиков. Работа этих белков-транспортёров контролируется гормонами и, в первую очередь, инсулином. Сильнее всего инсулин стимулирует транспорт глюкозы в мышцах и жировой ткани.
Результат
Результатом гликолиза является превращение одной молекулы глюкозы в две молекулы пировиноградной кислоты (ПВК) и образование двух восстановительных эквивалентов в видекофермента НАД∙H.
Полное уравнение гликолиза имеет вид:
Глюкоза + 2НАД+ + 2АДФ + 2Фн = 2НАД∙Н + 2ПВК + 2АТФ + 2H2O + 2Н+.
При отсутствии или недостатке в клетке кислорода пировиноградная кислота подвергается восстановлению до молочной кислоты, тогда общее уравнение гликолиза будет таким:
Глюкоза + 2АДФ + 2Фн = 2лактат + 2АТФ + 2H2O.
Таким образом, при анаэробном расщеплении одной молекулы глюкозы суммарный чистый выход АТФ составляет две молекулы, полученные в реакциях субстратного фосфорилирования АДФ.
У аэробных организмов конечные продукты гликолиза подвергаются дальнейшим превращениям в биохимических циклах, относящихся к клеточному дыханию. В итоге после полного окисления всех метаболитов одной молекулы глюкозы на последнем этапе клеточного дыхания — окислительном фосфорилировании, происходящем на митохондриальной дыхательной цепи в присутствии кислорода, — дополнительно синтезируются ещё 34 или 36 молекулы АТФ на каждую молекулу глюкозы.
Анаэробный гликолез
При дефиците кислорода или полном его отсутствии происходит анаэробный гликолиз. Молекула глюкозы расщепляется и окисляется до двух молекул молочной кислоты , и энергии окисления глюкозы в этом случае хватает только на две молекулы АТФ . Это результат неполного окисления глюкозы. Благодаря этому мы можем короткое время обходиться без кислорода.
При расщеплении одной молекулы глюкозы образуется всего две молекулы АТФ (в аэробных условиях - до 38). В итоге в клетке снижаются запасы АТФ и энергии. При анаэробном гликолизе накапливается молочная кислота , и возникает внутриклеточныйацидоз . Нарушается работа ионных насосов , снижается трансмемранный потенциал , и в клетке накапливаются Nа+ и вода. Уменьшаются концентрационные градиенты К+, Сl-, Са2+. Накопление в клетке кальция усугубляет поражение митохондрий .
В анэйробных условиях гликолиз становится основным процессом, обеспечивающим клетку АТФ (ATP)
Брожение — это процесс, важный в анаэробных условиях, в отсутствие окислительного фосфорилирования. В ходе брожения, как и в ходе гликолиза, образуется АТФ. Во время брожения пируват преобразуется в различные вещества.
Хотя на последнем этапе брожения (превращения пирувата в конечные продукты брожения) не освобождается энергия, он крайне важен для анаэробной клетки, поскольку на этом этапе регенерируется никотинамидадениндинуклеотид (NAD+), который требуется для гликолиза. Это важно для нормальной жизнедеятельности клетки, поскольку гликолиз для многих организмов — единственный источник АТФ в анаэробных условиях.
В ходе брожения происходит частичное окисление субстратов, при котором водород переносится на NAD+ (никотинамидадениндинуклеотид). В ходе других этапов брожения его промежуточные продукты служат акцепторами водорода, входящего в состав NADH; в ходе регенерации NAD+ они восстанавливаются, а продукты восстановления выводятся из клетки.
Конечные продукты брожения содержат химическую энергию (они не полностью окислены), но считаются отходами, поскольку не могут быть подвергнуты дальнейшему метаболизму в отсутствие кислорода (или других высоко-окисленных акцепторов электронов) и часто выводятся из клетки. Следствием этого является тот факт, что получение АТФ брожением менее эффективно, чем путём окислительного фосфорилирования, когда пируват полностью окисляется до двуокиси углерода. В ходе разных типов брожения на одну молекулу глюкозы получается от двух до четырех молекул АТФ (ср. около 36 молекул путём аэробного дыхания). Однако даже у позвоночных брожение (анаэробное окисление глюкозы) используется как эффективный способ получения энергии во время коротких периодов интенсивной мышечной работы, когда перенос кислорода к мышцам недостаточен для поддержания аэробного метаболизма. Брожение у позвоночных помогает во время коротких периодов интенсивной работы, но не предназначено для длительного использования. Например, у людей гликолиз с образованием молочной кислоты дает энергию на период от 30 секунд до 2 минут. Скорость генерации АТФ примерно в 100 раз больше, чем при окислительном фосфорилировании. Уровень pH в цитоплазме быстро падает, когда в мышце накапливается молочная кислота, в конечном итоге ингибируя ферменты, вовлеченные в процесс гликолиза.
