- •1.Предмет биохимии. Биохимия в системе естественных наук. Роль биохимии в развитии медицины.
- •2.Аминокислоты. Структура. Явление стереоизомерии. Классификации аминокислот.
- •Ионные формы аминокислот
- •Классификация По радикалу
- •По функциональным группам
- •По классам аминоацил-тРнк-синтетаз
- •По путям биосинтеза
- •По способности организма синтезировать из предшественников
- •По характеру катаболизма у животных
- •3.Аминокислоты. Свойства аминокислот, их поведение в растворе. Методы определения аминокислот.
- •4.Биосинтез аминокислот. Заменимые и незаменимые аминокислоты.
- •5.Непротеиногенные аминокислоты. Производные аминокислот.
- •Соли аминокислот
- •Эфиры аминокислот
- •Азометины
- •6.Катаболизм аминокислот.
- •1. Механизм реакции
- •2. Органоспецифичные аминотрансферазы ант и act
- •3. Биологическое значение трансаминирования
- •4. Диагностическое значение определения аминотрансфераз в клинической практике
- •1. Окислительное дезаминирование
- •2. Непрямое дезаминирование (трансдезаминирование)
- •3. Неокислительное дезамитровате
- •7.Структура и биологические функции пептидов и белков. Классификации белков.
- •8.Первичная структура белков.
- •9.Вторичная структура белков. Структурирующие факторы (силы). Явления денатурации и ренатурации белков.
- •10.Третичная и четвертичная структура белков. Структурирующие факторы (силы). Глобулярные и фибриллярные белки.
- •11.Расщепление белков в желудочно-кишечном тракте. Протеазы. Проферменты, их биологическая роль.
- •12.Катаболизм белков. Убиквитин-зависимая и убиквитин-независимая деградация белков. Цикл мочевины. Мочевая кислота.
- •13.Ферменты. Принципы классификации и номенклатуры. Структура и биологическая роль.
- •14.Активные центры ферментов. Основные представления о механизме ферментативных реакций. Обратимость ферментативных реакций.
- •15. Регуляция активности ферментов. Аллостерические ферменты. Активаторы и ингибиторы ферментов. Принцип обратной связи. Регуляция активности ферментов
- •16.Кинетика ферментативных реакций. Зависимость Михаэлиса-Ментен. График обратных величин Лайнуивера-Берка и его практическое применение.
- •20.Структура моносахаридов. Альдозы и кетозы. Стереоизомеры. Эпимеры. Номенклатура. Моносахариды или простые сахара
- •Стереоизомерия моносахаридов
- •21.Циклические формы моносахаридов. Пиранозы и фуранозы. Стереоизомеры циклических форм моносахаридов. Конформация циклических форм. Пиранозные и фуранозные кольцевые структуры моносахаридов
- •Аномерия
- •22.Структура и свойства олигосахаридов. Их биологическая роль. Олигосахариды
- •23.Структура и свойства полисахаридов. Их биологическая роль. Полисахариды
- •Гомополисахариды
- •24.Гликопротеины, гликозаминогликаны, протеогликаны. Структура и биологическая роль. Гликопротеины и протеогликаны
- •Гликопротеины
- •Общий обзор
- •Локализация
- •Результат
- •29.Окисление пировиноградной кислоты. Функционирование пируватдегидрогеназного комплекса. Роль коферментов. Регуляция процесса.
- •31. Цикл лимонной кислоты. Биологическая роль. Ферментное обеспечение. Энергетический выход. Образование nadh, fadh2 и gtp в цикле лимонной кислоты. Регуляция цикла
- •Глиоксилатный путь катаболизма углеводов. Ферментное обеспечение. Биологическая роль.
- •Окисление внемитохондриального nadh. Челночные системы митохондрий.
- •Пентозомонофосфатный путь катаболизма углеводов. Ферментное обеспечение. Биологическая роль.
- •Глюконеогенез. Биосинтез гликогена из пировиноградной кислоты. Ключевые стадии. Ферментное обеспечение. Регуляция глюконеогенеза.
- •Биосинтез гликогена. Ферментное обеспечение процесса. Реципрокная регуляция гликоген-синтазы и гликоген-фосфорилазы.
- •Регуляция расщепления и синтеза гликогена также взаимосвязана
- •Общие свойства, классификация и номенклатура липидов. Жирные кислоты. Строение и свойства нейтральных жиров. Воска.
- •Строение и свойства фосфоглицеридов.
- •Сфинголипиды. Строение и биологическая роль.
- •41) Строение и св-ва стероидов. Холестерол и его эфиры. Соединения липидов с друг. Биомолекулами. Липопротеины.
- •42) Образование мицелл, монослоёв, бислоёв и липосом фосфолипидами. Их роль. Структура, св-ва и функционирование биологических мембран.
- •47) Биосинтез насыщенных жк. Стр-ра синтазной с-мы для жк. Биосинтез пальмитиновой к-ты.
- •48) Биосинтез ненасыщенных жк. Незаменимые жк. Регуляция биосинтеза жк.
- •49) Биосинтез моно-, ди-, триацилглицеролов.
- •50) Метаболизм глицерофосфолипидов.
- •53. Строение нуклеиновых кислот. Пуриновые и пиримидиновые основания. Углеводные компоненты нуклеиновых кислот.
- •54. Нуклеотиды и их биологическая роль. Структура и функции атф.
- •55. Биосинтез пуриновых нуклеотидов
- •Образование дифосфатов и трифосфатов пуриновых нуклеозидов
- •Синтез пуриновых дезоксирибонуклеотидов
- •56. Пути регенерации и деградации пуринов. Пути регенерации пуриновых нуклеотидов
- •57. Биосинтез пиримидиновых нуклеотидов. Регуляция
- •Далее следуют реакции образования нуклеозидди- и трифосфатов, дезоксирибо-нуклеотидов, а также других типов нуклеотидов – цитидиновых и тимидиновых.
- •Регуляция биосинтеза пиримидинов
- •58. Пути регенерации и деградации пиримидиновых нуклеотидов. Регенерация пиримидиновых нуклеотидов
- •Деградация пиримидиновых нуклеотидов
- •59. Классификация нуклеиновых кислот. Первичная и вторичная структура днк. Значение двуспирального строения днк. Принцип комплиментарности.
- •61.Экспрессия генов
- •62. Оперон
- •63. Регуляция экспрессии генома у эукариот осуществляется на нескольких уровнях:
- •66. Новосинтезированным белкам надо "созреть"
- •70. Жирорастворимые витамины, их биологическая роль.
- •71. Водорастворимые витамины, их биологическая роль.
- •72.Биологическая роль микроэлементов: железа, меди, цинка, кобальта, марганца, йода. Биологическая роль макроэлементов: натрия, калия, кальция, магния, фосфора, серы, хлора.
- •Биогенные элементы
- •67. Фотосинтетический аппарат. Хлорофиллы, каратиноиды и другие пигменты. Световая стадия фотосинтеза. Фотофосфорилирование.
- •68. Темновая стадия фотосинтеза. Цикл Кальвина. Общее уравнение фотосинтеза. Затраты атр и nadph.
- •69.Механизм реализации фотосинтетического пути Хэтча-Слэка (с4). Его биологическая роль. Фотодыхание.
- •73.Биохимические основы адаптации.
- •74.Биотрансформация вредных (токсических) веществ в экосистемах.
- •75.Пути метаболизма ксенобиотиков в организме
- •76. Функционирование микросомальной системы окисления
- •1. Основные ферменты микросомальных
- •2. Функционирование цитохрома р450
- •3. Свойства системы микросомального
- •Широкая субстратная специфичность. Изоформы р450
- •77.Реакции конъюгации в печени.
- •78.Биохимические основы защиты клеток от повреждающих воздействий
- •79. Антиоксидантная система.
22.Структура и свойства олигосахаридов. Их биологическая роль. Олигосахариды
Другие олигосахариды, отличные от дисахаридов, устроены более сложно и реже встречаются в свободном виде. Наиболее простыми представителями являются мальтотриоза (состоит из трех остатков глюкозы), а также олигосахариды бобовых растений раффиноза (состоит из сахарозы и присоединенного к ней остатка галактозы) и стахиоза (отличается от раффинозы присутствием еще одного остатка галактозы). Важную группу более высокомолекулярных олигосахаридов составляют олигосахариды женского молока, например, лакто-N-фукопентаоза, которые играют важную роль в формировании кишечной флоры у новорожденных. Большая часть олигосахаридов не встречается в свободной форме, а является составной частью гликопротеидов в виде боковых цепей, присоединенных к полипептидным цепям.
23.Структура и свойства полисахаридов. Их биологическая роль. Полисахариды
В природе большинство углеводов представлено полисахаридами с высокой молекулярной массой. Биологическая роль ряда полисахаридов состоит в том, что одни обеспечивают накопление моносахаридов, другие служат структурными элементами клеточных стенок и соединительной ткани. Полисахариды отличаются друг от друга, как природой составляющих их моносахаридных остатков, так и длиной и степенью ветвления цепей. Их разделяют на два типа: гомополисахариды, состоящие из остатков одного и того же моносахарида, и гетерополисахариды, содержащие остатки двух или большего числа видов моносахаридов. Полисахариды могут иметь линейную или разветвленную структуру.
Гомополисахариды
К числу наиболее известных и важных с биологической точки зрения гомополисахаридов относят крахмал, гликоген, целлюлозу, пектины и хитин. Важнейшим резервным полисахаридом в клетках растений является крахмал, а в клетках животных – гликоген. Крахмал представляет собой смесь двух полимеров глюкозы:
-амилозы (15-20% от общего количества) и амилопектина (80‑85%). -амилоза имеет неразветвленную спиральную структуру, в которой остатки глюкозы соединены (1 4)-связями (рис. 7.7). |
Рис. 7.7. Структура фрагмента -амилозы |
Молекулярная масса цепей -амилозы колеблется от нескольких тысяч до 500 000. Амилопектин также имеет высокую молекулярную массу, но в отличие от -амилозы его цепи сильно разветвлены (одно ответвление примерно на каждые 20 остатков глюкозы). В неразветвленных участках остатки глюкозы соединены (1 4)-связями, а в точках ветвления – связями (1 6). |
|
Гликоген – основной резервный полисахарид в клетках животных. Основная масса гликогена накапливается у животных в клетках печени и клетках скелетной мускулатуры. Подобно амилопектину, гликоген является разветвленным полисахаридом, состоящим из остатков D-глюкозы, связанных друг с другом (1 4)-связями, но по сравнению с амилопектином он значительно более разветвлен (примерно одна точка ветвления на 10 остатков D‑глюкозы) и компактен. В местах ветвления образуются (1 6)-связи.
Декстринами называют вещества, образующиеся при гидролизе крахмала под действием амилаз. Амилазы расщепляют только (1 4)-связи. Устойчивое по отношению к амилазам «ядро» амилопектина, содержащее большое число (1 6)-связей называют остаточным декстрином.
Целлюлоза – линейный, неразветвленный гомополисахарид, состоящий из 10 000 и более остатков D-глюкозы. Она нерастворима в обычных растворителях и в воде и построена из -D-глюкопиранозных звеньев, соединенных (1 4) связями, образующих длинные вытянутые цепи, стабилизированные поперечными водородными связями. Если наиболее распространенными внутриклеточными биополимерами следует считать белки, то целлюлоза, бесспорно, это не только самый распространенный внеклеточный структурный полисахарид в растительном мире, но и вообще самый распространенный в природе биополимер.
Многие млекопитающие, в том числе человек, не способны переваривать целлюлозу, так как их пищеварительная система не содержит ферментов, расщепляющих -связи. В кишечнике жвачных и многих других травоядных животных присутствуют микроорганизмы, способные расщеплять -связи, и для этих животных целлюлоза является важным источником пищевых калорий. В толстом кишечнике человека также содержится ряд штаммов бактерий, способных воздействовать на целлюлозу, но их количество мало, и с их помощью человек переваривает только незначительную часть поступающей в его организм целлюлозы.
В основе пектиновых соединений лежат, так называемые пектовые кислоты, которые построены, в основном, из остатков -D-галактуроновой кислоты, связанных (14)-связью.
В пектине и протопектине разное число атомов водорода карбоксильных групп остатков -D-галактуроновой кислоты (выделены звездочками) замещается метильными группами (–СН3). Собственно пектин содержится в значительном количестве в растительных соках. Протопектин является обычным компонентом клеточной стенки и менее растворим, чем пектин.
Хитин, наряду с целлюлозой и пектинами, также является одним из важнейших полисахаридов, выполняющих структурную функцию. Он входит в состав клеточных стенок грибов и участвует в формировании твердого наружного покрова (экзоскелета) насекомых и ракообразных. Мономером хитина является N‑ацетилглюкозамин, молекулы которого связаны друг с другом (14)‑гликозидной связью.
Группа гетерополисахаридов будет рассмотрена нами в теоретической части к следующей лабораторной работе.
