- •Концепции современного естествознания
- •Вопрос 1. Естествознание как особая форма освоения объективной реальности. Статус естествознания в современном мире.
- •Вопрос 2. Панорама современного естествознания и тенденции развития.
- •Вопрос 3. Характерные черты науки и динамика ее развития.
- •4. Эволюция и место науки в системе культуры. Значение науки в эпоху научно-технической революции (нтр).
- •5. Естественная и гуманитарная культура. Отличие науки от других областей культуры.
- •6.Эмпирический и теоретический уровни науки как уровни естественнонаучного познания. Методы научного познания.
- •7. Применение математических методов в естествознании.
- •8.Становление научного подхода познания и освоения мира.
- •9. Основные этапы развития естествознания.
- •10. Естественнонаучная картина мира.
- •11.Предмет физики. Физика как ядро естествознания.
- •1.1. Предмет и структура физики.
- •12. Вклад Галилея в развитие естествознания.
- •13. Законы движения планет Кеплера.
- •14. Классическая механика Ньютона: основные разделы.
- •15. Закон Всемирного тяготения.
- •16. Три начала механики.
- •17. Становление первой научной картины мира.
- •18. Корпускулярная и континуальная концепция описания природы.
- •19. Структурные уровни организации материи: микро-, макро- и мегамиры. Пространство и время.
- •20. Принципы относительности; принципы симметрии; законы сохранения.
- •21. Взаимодействие. Типы взаимодействия в природе. Их объединение в единую теорию поля.
- •22. Принцип близкодействия; дальнодействия.
- •23. Принцип суперпозиции, неопределенности, дополнительности.
- •24. Теория относительности Энштейна.
- •25. Вещество и поле.
- •26.Корпускулярно-волновой дуализм.
- •27. Свет. Корпускулярная, волновая, квантовая, электромагнитная концепция света.
- •28. Микрочастицы. Их свойства и классификация.
- •29. Кварковая модель адронов.
- •30. Классификация кварков: ароматы и цвета.
- •31.Основы термодинамики. Энтропия.
- •32.Законы сохранения энергии в макроскопических процессах; принцип возрастания энтропии.
- •33.Изменения парадигмы естествознания на рубеже – вв. Принципы формирования научной теории.
- •34.Происхождение Вселенной. Модель расширяющейся Вселенной.
- •36. Эволюция и строение галактики.
- •37. Строение и эволюция звезд.
- •38. Солнечная система и ее происхождение.
- •39 Строение и эволюция Земли
- •40. Геосферные оболочки Земли.
- •41. Литосфера как абиотическая основа жизни. Экологические функции литосферы.
- •42. Становление химической науки.
- •43. Учение о составе вещества. Классификация веществ. Химические процессы. Реакционная способность веществ.
- •45. Синтез новых материалов. Химия и удовлетворение потребностей человека.
- •46. Биология как наука. Теории происхождения живого.
- •Вопрос 47. Учение об эволюции ч. Дарвина и неодарвинизм.
- •Вопрос 48. Принципы эволюции, воспроизводства и развития живых систем.
- •Вопрос 49. Специфика живого. Особенности биологического уровня организации материи.
- •50. Ген как элементарная единица наследственности. Геном. Генотип.
- •51. Нуклеиновые кислоты. Белки. Аминокислоты.
- •52. Генетика и эволюция. Основные тенденции развития биологии в конце 20 века.
- •53. Предмет и задачи экологии. Экосистемный уровень организации живого мира.
- •54. Структура экосистем.
- •55. Закономерности развития экосистем.
- •56. Многообразие живых организмов – основа организации и устойчивости биосферы.
- •57. Биосфера как глобальная экосистема. Современные концепции биосферы. Биосферная аксиоматика. Учение в.И. Вернадского о биосфере.
- •58. Человек и биосфера. Ноосфера.
- •59. Отношение «человек-биосфера» как глобальная проблема.
- •60. Появление современного человека. Факторы выделения человека из животного мира.
- •61. Ископаемые предки человека разумного.
- •62. Сущность понятия «синергетика».
- •63. Теория самоорганизации и управления. Синергетика и кибернетика.
- •64. Неравновесные системы.
22. Принцип близкодействия; дальнодействия.
• близкодействие - непосредственный контакт или передача взаимодействия с помощью посредника, несущего в себе импульс, например, обмен, когда один человек бросает другому тяжелый предмет, оба ощущают отдачу; скорость изменения импульса и будет силой;
• дальнодействие - передача взаимодействия через разделяющее тела пространство без материальных посредников.
Ньютон был противником концепции дальнодействия, однако наличие в природе таких явлений, как гравитация, электричество и магнетизм, не укладывалось в концепцию близкодействия. Поэтому об их природе Ньютон предпочитал не рассуждать, оставляя эту проблему на долю потомков.
Долгое время считалось, что абсолютное пространство заполнено особого рода средой - эфиром. Именно волны в эфире передают взаимодействие от одних тел к другим, подобно тому, как волны на поверхности воды приводят в движение поплавок. И действительно, например, такое "дальнодействующее" явление, как свет, явно обнаруживает в опытах волновые свойства, аналогичные тем, которые характерны для любых волновых процессов (дифракция и интерференция). Позднее из работ Максвелла стало понятно, что свет является частным случаем проявления электромагнетизма. Он же впервые ввел понятие электромагнитного поля, как особого состояния пространства, которое содержит в себе и окружает тела, находящиеся в электрическом и магнитном состояниях. Впервые прозвучало, что поле - это характеристика самого пространства, которое может оказывать силовое влияние на тела, помещенные в него.
В средние века открытое Фалесом странное явление тщательно изучал придворный медик английской королевы Елизаветы I Уильям Гильберт, который обнаружил, что способность электризоваться, присуща и многим другим веществам. Работы Фарадея навели на мысль, что электричество скрыто в атоме, но существование электрона было твердо установлено только в 90-е годы 19-го века после того, как Дж. Дж. Томсон открыл "катодные лучи".
Как и электричество, магнетизм в природе обнаружили древние греки. Примерно к 600 г. до н. э. им были известны свойства магнитного железняка (оксида железа); как обнаружилось, его куски могут действовать друг на друга на расстоянии.
К концу XVI в. европейские ученые начали постигать истинную природу магнетизма. Гильберт доказал, что Земля ведет себя как большой магнит, свойства которого весьма напоминают свойства построенной им модели - шара из магнитного железняка.
Как электрическое и гравитационное взаимодействия, взаимодействие магнитных полюсов подчиняется закону обратных квадратов. Следовательно, электрическая и магнитная силы "дальнодействующие", и их действие ощутимо на больших расстояниях от источника.
В начале XIX в. выяснилось, что между электричеством и магнетизмом существует глубокая связь. Датский физик Ханс Кристиан Эрстед открыл, что электрический ток создает вокруг себя магнитное поле, тогда как Майкл Фарадей показал, что переменное магнитное поле индуцирует в проводнике электрический ток.
Решающий шаг в познании электромагнетизма сделал в 50-х годах XIX в. Джеймс Клерк Максвелл, объединивший электричество и магнетизм в единой системе уравнений теории электромагнетизма - первой единой теории поля - невидимого воздействия, создаваемого материей, простирающегося далеко в пространство и способного влиять на электрически заряженные частицы, электрические токи и магниты.
