- •Концепции современного естествознания
- •Вопрос 1. Естествознание как особая форма освоения объективной реальности. Статус естествознания в современном мире.
- •Вопрос 2. Панорама современного естествознания и тенденции развития.
- •Вопрос 3. Характерные черты науки и динамика ее развития.
- •4. Эволюция и место науки в системе культуры. Значение науки в эпоху научно-технической революции (нтр).
- •5. Естественная и гуманитарная культура. Отличие науки от других областей культуры.
- •6.Эмпирический и теоретический уровни науки как уровни естественнонаучного познания. Методы научного познания.
- •7. Применение математических методов в естествознании.
- •8.Становление научного подхода познания и освоения мира.
- •9. Основные этапы развития естествознания.
- •10. Естественнонаучная картина мира.
- •11.Предмет физики. Физика как ядро естествознания.
- •1.1. Предмет и структура физики.
- •12. Вклад Галилея в развитие естествознания.
- •13. Законы движения планет Кеплера.
- •14. Классическая механика Ньютона: основные разделы.
- •15. Закон Всемирного тяготения.
- •16. Три начала механики.
- •17. Становление первой научной картины мира.
- •18. Корпускулярная и континуальная концепция описания природы.
- •19. Структурные уровни организации материи: микро-, макро- и мегамиры. Пространство и время.
- •20. Принципы относительности; принципы симметрии; законы сохранения.
- •21. Взаимодействие. Типы взаимодействия в природе. Их объединение в единую теорию поля.
- •22. Принцип близкодействия; дальнодействия.
- •23. Принцип суперпозиции, неопределенности, дополнительности.
- •24. Теория относительности Энштейна.
- •25. Вещество и поле.
- •26.Корпускулярно-волновой дуализм.
- •27. Свет. Корпускулярная, волновая, квантовая, электромагнитная концепция света.
- •28. Микрочастицы. Их свойства и классификация.
- •29. Кварковая модель адронов.
- •30. Классификация кварков: ароматы и цвета.
- •31.Основы термодинамики. Энтропия.
- •32.Законы сохранения энергии в макроскопических процессах; принцип возрастания энтропии.
- •33.Изменения парадигмы естествознания на рубеже – вв. Принципы формирования научной теории.
- •34.Происхождение Вселенной. Модель расширяющейся Вселенной.
- •36. Эволюция и строение галактики.
- •37. Строение и эволюция звезд.
- •38. Солнечная система и ее происхождение.
- •39 Строение и эволюция Земли
- •40. Геосферные оболочки Земли.
- •41. Литосфера как абиотическая основа жизни. Экологические функции литосферы.
- •42. Становление химической науки.
- •43. Учение о составе вещества. Классификация веществ. Химические процессы. Реакционная способность веществ.
- •45. Синтез новых материалов. Химия и удовлетворение потребностей человека.
- •46. Биология как наука. Теории происхождения живого.
- •Вопрос 47. Учение об эволюции ч. Дарвина и неодарвинизм.
- •Вопрос 48. Принципы эволюции, воспроизводства и развития живых систем.
- •Вопрос 49. Специфика живого. Особенности биологического уровня организации материи.
- •50. Ген как элементарная единица наследственности. Геном. Генотип.
- •51. Нуклеиновые кислоты. Белки. Аминокислоты.
- •52. Генетика и эволюция. Основные тенденции развития биологии в конце 20 века.
- •53. Предмет и задачи экологии. Экосистемный уровень организации живого мира.
- •54. Структура экосистем.
- •55. Закономерности развития экосистем.
- •56. Многообразие живых организмов – основа организации и устойчивости биосферы.
- •57. Биосфера как глобальная экосистема. Современные концепции биосферы. Биосферная аксиоматика. Учение в.И. Вернадского о биосфере.
- •58. Человек и биосфера. Ноосфера.
- •59. Отношение «человек-биосфера» как глобальная проблема.
- •60. Появление современного человека. Факторы выделения человека из животного мира.
- •61. Ископаемые предки человека разумного.
- •62. Сущность понятия «синергетика».
- •63. Теория самоорганизации и управления. Синергетика и кибернетика.
- •64. Неравновесные системы.
21. Взаимодействие. Типы взаимодействия в природе. Их объединение в единую теорию поля.
Фундамента?льные взаимоде?йствия — качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел.
На сегодня достоверно известно существование четырех фундаментальных взаимодействий:
• гравитационного
• электромагнитного
• сильного
• слабого
При этом электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия
В физике механическая энергия делится на два вида — потенциальную и кинетическую энергию. Причиной изменения движения тел (изменения кинетической энергии) является сила (потенциальная энергия) (см. второй закон Ньютона). Исследуя окружающий нас мир, мы можем заметить множество самых разнообразных сил: сила тяжести, сила натяжения нити, сила сжатия пружины, сила столкновения тел, сила трения, сила сопротивления воздуха, сила взрыва и т. д. Однако когда была выяснена атомарная структура вещества, стало понятно, что все разнообразие этих сил есть результат взаимодействия атомов друг с другом. Поскольку основной вид межатомного взаимодействия — электромагнитное, то, как оказалось, большинство этих сил — лишь различные проявления электромагнитного взаимодействия. Одно из исключений составляет, например, сила тяжести, причиной которой является гравитационное взаимодействие между телами, обладающими массой.
К началу XX века выяснилось, что все известные к тому моменту силы сводятся к двум фундаментальным взаимодействиям: электромагнитному и гравитационному.
В 1930-е годы физики обнаружили, что ядра атомов состоят из нуклонов (протонов и нейтронов). Стало понятно, что ни электромагнитные, ни гравитационные взаимодействия не могут объяснить, что удерживает нуклоны в ядре. Было постулировано существование нового фундаментального взаимодействия: сильного взаимодействия. Однако в дальнейшем оказалось, что и этого недостаточно, чтобы объяснить некоторые явления в микромире. В частности, было непонятно, что заставляет распадаться свободный нейтрон. Тогда было постулировано существование слабого взаимодействия, и этого оказалось достаточно для описания всех до сих пор наблюдавшихся явлений в микромире.
Первой из теорий взаимодействий стала теория электромагнетизма, созданная Максвеллом в 1863 году. Затем в 1915 г. Эйнштейн сформулировал общую теорию относительности, описывающую гравитационное поле. Появилась идея построения единой теории фундаментальных взаимодействий (которых на тот момент было известно только два), подобно тому как Максвеллу удалось создать общее описание электрических и магнитных явлений. Такая единая теория объединила бы гравитацию и электромагнетизм в качестве частных проявлений некоего единого взаимодействия.
В течение первой половины XX века ряд физиков предприняли многочисленные попытки создания такой теории, однако ни одной полностью удовлетворительной модели выдвинуто не было. Это, в частности, связано с тем, что общая теория относительности и теория электромагнетизма различны по своей сути. Тяготение описывается искривлением пространства-времени, и в этом смысле гравитационное поле нематериально, в то время как электромагнитное поле является материей.
Во второй половине XX столетия задача построения единой теории осложнилась необходимостью внесения в неё слабого и сильного взаимодействий, а также квантования теории.
В 1967 году Саламом и Вайнбергом была создана теория электрослабого взаимодействия, объединившая электромагнетизм и слабые взаимодействия. Позднее в 1973 году была предложена теория сильного взаимодействия (квантовая хромодинамика). На их основе была построена Стандартная Модель элементарных частиц, описывающая электромагнитное, слабые и сильное взаимодействия.
Экспериментальная проверка Стандартной Модели заключается в обнаружении предсказанных ею частиц и их свойств. В настоящий момент открыты все элементарные частицы Стандартной Модели, за исключением хиггсовского бозона.
Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: общей теорией относительности и Стандартной Моделью. Их объединения пока достичь не удалось из-за трудностей создания квантовой теории гравитации. Для дальнейшего объединения фундаментальных взаимодействий используются различные подходы: теории струн, петлевая квантовая гравитация, а также М-теория.
