Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kontseptsii_sovremennogo_estestvoznania.doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
388.61 Кб
Скачать

19. Структурные уровни организации материи: микро-, макро- и мегамиры. Пространство и время.

Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. Материя включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все те, которые в принципе могут быть познаны в будущем на основе совершенствования средств наблюдения и эксперимента. С точки зрения марксистско-ленинского понимания материи, она органически связана с диалектико-материалистическим решением основного вопроса философии; оно исходит из принципа материального единства мира, первичности материи по отношению к человеческому сознанию и принципа познаваемости мира на основе последовательного изучения конкретных свойств, связей и форм движения материи.

Микро, Макро, Мега миры.

Микромир – это молекулы, атомы, элементарные частицы — мир предельно малых, непосредственно не наблю­даемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни — от бесконечно­сти до 10-24 с.

Макромир — мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соот­носима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время — в секундах, минутах, часах, годах.

Мегамир — это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоро­стей, расстояние в котором измеряется световыми годами, а время существования космических объектов — миллионами и мил­лиардами лет.

И хотя на этих уровнях действуют свои специфические зако­номерности, микро-, макро - и мегамиры теснейшим образом взаи­мосвязаны.

На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 в минус восемнадцатой степени см., за время - порядка 10 в минус двадцать второй степени с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.

20. Принципы относительности; принципы симметрии; законы сохранения.

Согласно принципу относительности Галилея, механические явления в инерциальных системах отсчёта протекают одинаково и не зависят от состояний движения или покоя. Таким образом, инерциальные системы отсчёта оказываются равноправными и неразличимыми при выполнении механических экспериментов. С другой стороны, механические явления описываются соответствующими физическими величинами и законами.

В случае использования подходящего преобразования как физические величины, так и физические законы не меняют свой вид после замены координат и времени одной системы на координаты и время другой системы.

Специальная теория относительности справедлива не только для механических, но и для остальных физических явлений, в первую очередь для электромагнитных явлений. Пространственно-временные измерения в СТО производятся с помощью света или электромагнитных волн. Поскольку координаты и время являются основными параметрами преобразований в теориях относительности, то из соответствия СТО законам электромагнетизма вытекает соответствие СТО теориям относительности, которые описывают явления, даже и не связанные с электромагнетизмом.

Точность, с которой описываются любые физические явления на базе координат и времени в СТО, соответствует той точности, с которой производятся измерения координат и времени в СТО. Расширенный на все физические явления принцип относительности Галилея можно назвать принципом относительности Пуанкаре-Эйнштейна. Пуанкаре упоминается здесь потому, что он ещё в 1895 г. формулирует принцип относительности в своей статье «К теории Лармора», а затем с его помощью рассматривает преобразование для гравитационного поля движущихся тел в статье «О динамике электрона».

Расширенная специальная теория относительности, разработанная Сергеем Федосиным, также как и СТО, использует принцип относительности Эйнштейна и преобразования Лоренца для связи между событиями в разных инерциальных системах отсчёта. Различие между теориями относительности РСТО и СТО вытекает из того, что они выведены исходя из неодинакового набора исходных постулатов или аксиом.

Относительность физических систем и симметрии

Анализ теорий относительности показывает, что в основе каждой из них лежит какая-то симметрия физических законов. В относительности Галилея такой симметрией является независимость явлений от значения постоянной скорости движения системы. Причиной симметрии следует считать независимость электромагнитных и гравитационных сил, действующих между телами, от одновременного и одинакового изменения состояния движения этих тел.

Симметрией СТО является симметрия относительности Галилея с учётом фактора ограниченности скорости света (или скорости гравитационной волны, если с её помощью осуществляются пространственно-временные измерения). Известно, что если устремить скорость света в преобразованиях Лоренца в бесконечность, эти преобразования переходят в преобразования Галилея. Математически симметрию можно выразить как неизменность интервала между двумя пространственно-временными точками в разных инерциальных системах отсчёта. Другой путь демонстрации симметрии – выражение физических законов в таком виде, что они имеют один и тот же вид во всех инерциальных системах.

Для общей теории относительности симметрией можно также считать независимость дифференциального интервала между двумя пространственно-временными точками в применении к любой системе отсчёта, а также ковариантную форму записи физических законов, обеспечивающую их применимость в любой физической системе.

В теории Эйнштейна-Картана дополнительной симметрией можно считать симметрию относительно вращения тел, а в скалярно-тензорной теории Джордан-Бранс-Дике дополнительной симметрией можно предполагать учёт дополнительного скалярного поля.

Симметрия лоренц-инвариантной теории гравитации (ЛИТГ) Федосина заключается в симметрии между электромагнитным и гравитационным полями, которые считаются фундаментальными и равноправными физическими векторными полями, смотри гравимагнетизм и максвеллоподобные гравитационные уравнения. Одновременный учёт этих полей в теории гравитации приводит к понятию тяготения как суммарного эффекта от всех видов материи и полей.

В ковариантной теории гравитации (КТГ) как гравитационное, так и электромагнитное поля наравне с веществом участвуют в изменении метрики пространства-времени. В этом смысле в КТГ достигается симметрия между действием полей и вещества.

принцип неопределённости Гейзенберга, водородная система и квантованность параметров космических систем имеют место как на уровне элементарных частиц, так и на уровне звёзд. Для уровня элементарных частиц вводится в рассмотрение сильная гравитация, при этом постоянная сильной гравитации значительно отличается от обычной гравитационной постоянной. Для звёзд вместо постоянной Планка и постоянной Дирака соответственно должны применяться звёздная постоянная Планка и звёздная постоянная Дирака, а также другие, звёздные постоянные. В ходе развития науки следует ожидать открытия других теорий относительности физических систем и соответствующих им симметрий.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]