Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СППР лекции (окончательные).docx
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
455.49 Кб
Скачать

Позиционные игры

Все игры, которые рассматривались до сих пор, были заданы в так называемой нормальной форме, которая предполагает, что:

1) задано множество игроков I (не ограничивая общности, можно считать, что k игроков заданы своими номерами, т. е. I = {1, 2, …, k};

2) для каждого игрока задано множество возможных стратегий ;

3) для каждой ситуации (т. е. совместного выбора игроками своих стратегий: — первым игроком, — вторым, …, k-м игроком) заданы выигрыши игроков: — первого, — второго, …, k-го, т. е. заданы функции выигрышей.

Пример 5.2 (Игра «Угадывание монеты» в нормальной форме»).

Требуется составить нормальную форму игры из примера 1.2 (первый игрок прячет в кулаке одну из двух монет – 1 руб. или 5 руб. – по своему выбору и незаметно от второго игрока, а второй игрок пытается угадать, какая монета спрятана. Если угадывает, то получает эту монету, если нет, то платит первому игроку 3 руб.).

Решение. В игре, рассмотренной в примере 1.2, множество игроков , множество стратегий первого игрока

{ = «спрятать 1 руб.», = «спрятать 5 руб.»},

множество стратегий второго игрока

{ = «назвать 1 руб.», = «назвать 5 руб.»},

а функции выигрышей игроков, очевидно, задаются так:

Легко видеть, что ( (

Партия игры, заданной в нормальной форме, состоит в одновременном выборе игроками своих стратегий. Во многих случаях, между тем, игроки делают выбор последовательно.

Такие игры называются позиционными. Процесс позиционной игры состоит в последовательном переходе от одной позиции к другой, который осуществляется либо путем выбора игроками возможных альтернатив в соответствии с правилами игры, либо случайным образом (в этом случае говорят о случайном ходе).

Множество позиций в такой игре можно представить в виде упорядоченного множества, которое называется деревом игры, и представляет собой граф без циклов, в котором некоторые из вершин называются окончательными и соответствуют моменту окончания партии и расплаты — известны выигрыши каждого из игроков при достижении этих вершин; каждая из неокончательных вершин соответствует либо выбору конкретным игроком одной из возможных альтернатив, либо случайному ходу; среди неокончательных вершин выделена начальная вершина (соответствующая началу партии игры).

Различают позиционные игры с полной информацией и с неполной. В играх с полной информацией каждый игрок при своем ходе знает, в какой позиции дерева игры он находится. В играх с неполной информацией игрок, делающий ход, не знает точно, в какой именно позиции он находится, игроку известно лишь информационное множество — некоторое множество позиций, включающее не только ту позицию, в которой фактически находится игрок, но также и другие позиции (в которых игрок мог бы находиться).

Пример 5.2 (Позиционная игра «угадывание монеты» с полной информацией). Требуется проанализировать игру, описанную в примере 1.2 (первый игрок прячет в кулаке одну из двух монет – 1 руб. или 5 руб. – по своему выбору и незаметно от второго игрока, а второй игрок пытается угадать, какая монета спрятана. Если угадывает, то получает эту монету, если нет, то платит первому игроку 3 руб.), в ситуации, когда второй игрок имеет возможность подглядеть, какую монету спрятал первый.

Решение. Дерево игры изображено на рис. 5.1. Серым цветом на рис. 5.1 выделены информационные множества игроков.

Стратегии первого игрока таковы:

= «спрятать 1 руб.», = «спрятать 5 руб.»,

а стратегию второго игрока удобно задавать в виде пары альтернатив , где

,

первая из этих альтернатив соответствует выбору второго игрока в случае выбора первым его первой альтернативы, а вторая альтернатива соответствует выбору второго игрока в случае выбора первым игроком его второй альтернативы.

Очевидно, у второго игрока есть четыре чистых стратегии:

Выигрыши игроков удобно свести в матрицу

. (5.1)

Строки этой матрицы соответствуют выбору первым игроком своих стратегий и , а столбцы — выбору вторым игроком своих стратегий

Элементы матрицы равны соответствующим выигрышам первого игрока (в данной игре выигрыш второго игрока противоположен выигрышу первого).

I

спрятать 5 руб.

спрятать 1 руб.

II

II

назвать 5 руб.

назвать 5 руб.

назвать 1 руб.

назвать 1 руб.

-5, 5

3, -3

3, -3

-1, 1

Рис. 5.1 – Дерево позиционной игры «Угадывание монеты» с полной информацией

Например, в левой верхней клетке матрицы стоит выигрыш первого игрока, если он выбрал стратегию = «спрятать 1 руб.», а второй игрок выбрал стратегию (т. е. независимо от того, какую альтернативу выбрал первый игрок, второй называет 1 руб.). Итак, первый игрок спрятал 1 руб., а второй игрок навал 1 руб., значит, выигрыш первого игрока равен -1 руб. Выигрыши в остальных ситуациях определяются точно таким же образом.

Данная матричная игра имеет седловую точку (-1), которая соответствует первой строке и второму столбцу платежной матрицы (5.1), т. е. выбору первым игроком своей стратегии = «спрятать 1 руб.», а вторым игроком — стратегии (т. е. назвать 1 руб., если первый игрок спрятал 1 руб., и 5 руб., если первый игрок спрятал 5 руб.).

Подобная ситуация для позиционных игр с полной информацией типична — в только что рассмотренном примере содержится идея доказательства следующей теоремы.

Теорема. Любая позиционная игра с полной информацией эквивалентна некоторой матричной игре, в которой существует седловая точка в чистых стратегиях.

Эта теорема означает, в частности, существование оптимальных чистых стратегий в играх типа шахмат и шашек; такие оптимальные стратегии пока не известны, но лишь потому, что платежная матрица, к которой сводится, например, шахматная игра, очень велика по размеру, и ее анализ современным компьютерам пока не под силу, однако развитие технологии распределенных вычислений в интернете, по-видимому, в ближайшие десятилетия приведет к отысканию оптимальных шахматных стратегий.

Иное дело обстоит с позиционными играми с неполной информацией (к таким играм относятся, например, домино и большинство карточных игр). Рассмотрим конкретный пример.

Пример 5.2 (Позиционная игра «Угадывание монеты» с неполной информацией). Требуется проанализировать игру «Угадывание монеты» как позиционную игру с неполной информацией.

Решение. Информационные множества игроков в таком случае закрашены серым на рис. 5.2.

Теперь мы получили позиционную игру с неполной информацией: второму игроку в момент его хода известно информационное множество, но неизвестна конкретная позиция из информационного множества, в которой он находится (левая или правая на рис. 5.2).

В этом случае первый игрок имеет две стратегии:

= «спрятать 1 руб.», = «спрятать 5 руб.»,

и поскольку второму игроку выбор первого неизвестен, у второго игрока есть две стратегии:

= «назвать 1 руб.», = «назвать 5 руб.».

I

спрятать 5 руб.

спрятать 1 руб.

II

II

назвать 5 руб.

назвать 5 руб.

назвать 1 руб.

назвать 1 руб.

-5, 5

3, -3

3, -3

-1, 1

Рис. 5.2 – Дерево позиционной игры «Угадывание монеты» с неполной информацией

Матрица

выигрышей первого игрока в зависимости от выбора игроками своих стратегий не имеет седловой точки в чистых стратегиях, а оптимальные смешанные стратегии игроков таковы: = (2/3,1/3), = (2/3,1/3), при этом цена игры равна v = 1/3.

Применим теперь аппарат теории игр к исследованию конкуренции производителя коммерческого программного обеспечения с пиратами.

Пример 5.3 (Игра «Проверка легальности программного обеспечения»). Производитель программного обеспечения продает лицензии на использование своей продукции. Пользователь имеет возможность приобрести лицензионную копию программного продукта (по цене c ден. ед.) или пиратскую (по цене d ден. ед.). При этом полезность, которую приносит использование нелицензионного программного обеспечения, в точности равна полезности от использования легальной копии, а себестоимость изготовления одной копии (и легальной, и пиратской) пренебрежимо мала по сравнению со всеми остальными величинами. Поскольку значительная часть пользователей пользуются нелицензионными копиями, производитель может предпринимать определенные меры по изобличению пользователей пиратских копий и привлечению их к ответственности. При этом он понесет определенные издержки по организации проверки легальности использования программного обеспечения (в размере l ден. ед. на проверку каждого пользователя), но если будет обнаружено незаконное использование программного продукта, пользователь заплатит в пользу производителя штраф (в размере f ден. ед.). Требуется проанализировать данную конфликтную ситуацию.

Решение. Очевидно, выполняются следующие соотношения:

Будем считать также, что

(последнее неравенство эквивалентно тому, что ).

Данная конфликтная ситуация является типичной иллюстрацией асимметрии информации, когда пользователь знает происхождение своего программного обеспечения (легальное оно или пиратское), а производитель (и государство) не может отличить «честного» пользователя от пользователя — пирата.

Рассмотрим позиционную форму игры и построим ее дерево (рис. 5.3). Первым игроком является пользователь, он осознанно принимает одно из двух решений: приобрести лицензионное или пиратское программное обеспечение. Производитель является вторым игроком, поскольку он может принять решение по инициации проверки только после того, как пользователь сделает свой ход.

I

использовать нелицензионное программное обеспечение

использовать лицензионное программное обеспечение

II

II

не инициировать проверку

не инициировать проверку

инициировать проверку

инициировать проверку

-d-l, f-l

-d, 0

-c, c

-c, c-l

Рис. 5.3 – Дерево позиционной игры «Проверка легальности программного обеспечения»

Поскольку производитель в момент принятия решения не знает, в какой из двух точек зоны неопределенности он находится, данная конфликтная ситуация формализуется с помощью биматричной игры с матрицами выигрышей

Строки соответствуют стратегиям первого игрока (пользователя):

  • использовать лицензионное программное обеспечение;

  • использовать нелицензионное программное обеспечение.

Столбцы соответствуют стратегиям второго игрока (производителя):

  • инициировать проверку лицензий на использование пользователем программного обеспечения;

  • не инициировать такую проверку.

Пусть

смешанные стратегии игроков: пользователь с вероятностью р приобретает лицензионное программное обеспечение [и с вероятностью (1 - р) — нелицензионное], производитель с вероятностью q инициирует проверку лицензий [и с вероятностью (1 - q) не инициирует].

Множество возможных исходов игры в зависимости от выбора игроками смешанных стратегий представлено на рис. 5.4.

Максиминные выигрыши пользователя и производителя равны соответственно

Множество Парето-оптимальных исходов — это ломаная ABC, а переговорное множество, отсекаемое от множества Парето максиминными выигрышами, — это выделенный жирным на рис. 5.4 отрезок

Решение Нэша определяется максимумом функции Нэша:

который достигается при

,

что соответствует смешанным стратегиям игроков

Итак, рациональный потребитель в половине случаев предпочтет использование нелицензионного программного обеспечения, а рациональному производителю никогда не выгодно инициировать проверку лицензий.

Если считать функции полезности и пользователя, и производителя строго возрастающими, принципиальных изменений в конфликтной ситуации не произойдет.

Таким образом, вне зависимости от склонности производителей и пользователей программного обеспечения к риску, рациональный пользователь только в половине случаев предпочтет приобрести лицензионное программное обеспечение, а рациональный производитель никогда не будет инициировать проверку легальности использования его продукта пользователями.

Так будет всегда, пока цена лицензии с будет больше цены пиратской копии d. В случае же, когда c = d, очевидно, пользователь предпочтет приобрести легальную копию, но при этом прибыль производителя существенно сократится (если не превратится в убытки).

Рис. 5.4 – Множество возможных исходов игры «Проверка легальности программного обеспечения»