- •Курск – 2015
- •Введение
- •Из истории деталей машин
- •Общие сведения о машинах и деталях Основные понятия
- •Основные требования к машинам и деталям
- •Критерии работоспособности и расчета деталей машин
- •Этапы проектирования машин
- •Основные материалы для изготовления деталей машин Выбор материала и термообработки
- •Мероприятия, направленные на экономию материала
- •Общие сведения о механических передачах Назначение передач, классификация
- •Основные кинематические и силовые соотношения в передачах
- •Фрикционные передачи
- •Зубчатые передачи Основные сведения
- •Характеристика эвольвентного зацепления
- •Основные геометрические зависимости цилиндрических зубчатых передач
- •Материалы зубчатых колес
- •Способы изготовления зубчатых колес
- •Особенности цилиндрических прямозубых, косозубых и шевронных передач. Силы, действующие в зацеплении
- •Особенности конических зубчатых передач
- •Точность зубчатых передач
- •Допустимые скорости и области применения цилиндрических зубчатых передач, в зависимости от степени точности
- •Виды разрушения зубьев
- •Расчет зубчатых передач на контактную прочность и изгиб
- •Червячные передачи Основные сведения
- •Материалы и виды разрушения червяных колес
- •Расчет червячной передачи
- •Ременные передачи Основные сведения
- •Усилия и напряжения в ветвях ремня
- •Скольжение ремня
- •Особенности клиноременных передач
- •О расчете ременной передачи по тяговой способности и на долговечность
- •Цепные передачи Основные сведения
- •Конструкции цепей и звездочек
- •Расчет цепной передачи на износостойкость
- •Р едукторы, мультипликаторы, коробки передач, вариаторы
- •Оси и валы Основные сведения
- •Критерии работоспособности валов и осей, расчет на прочность
- •Подшипники скольжения Основные сведения
- •Режимы смазки и смазочные материалы
- •Распространенные антифрикционные пластичные смазочные материалы
- •Расчет подшипников скольжения
- •Подшипники качения Основные сведения
- •Материалы и смазка подшипников качения
- •Виды разрушения и подбор подшипников качения
- •Основные сведения
- •Устройство и принцип работы некоторых муфт
- •Соединения деталей машин
- •Резьбовые соединения Классификация резьб и их геометрические параметры
- •Основные типы резьб и область их применения
- •Разновидности резьбовых соединений
- •Шпоночные и шлищевые соединения
- •Штифтовые соединения
- •Профильные соединения
- •Заклепочные соединения
- •Сварные соединения
- •Клеевые соединения
- •Соединения с натягом
- •Некоторые виды машин
- •Молоты и прессы
- •Грузоподъемные машины
- •Транспортирующие машины
- •Литература
- •Содержание
Способы изготовления зубчатых колес
Заготовки зубчатых колес получают литьем, ковкой в штампах или свободной ковкой в зависимости от материала, формы и размеров. Зубья колес изготавливают накатыванием, нарезанием, реже литьем.
Накатывание зубьев применяется в массовом производстве. Стальную цилиндрическую заготовку нагревают токами высокой частоты до температуры пластического состояния (около 1200º), а затем обкатывают между колесами-накатниками. При этом на заготовке выдавливаются зубья.
Рис. 11 Нарезание зубьев: методом копирования (а, б),
методом обкатки (в, г)
Существуют два метода нарезания зубьев: копирование и обкатка. Метод копирования заключается в прорезании впадин между зубьями модульными фрезами: дисковыми (рис.11а) или пальцевыми (рис.11б). Профиль впадины представляет собой копию профиля режущих кромок фрезы. Метод копирования - малопроизводительный, применяется преимущественно в ремонтном деле.
Нарезание зубьев методом обкатки основано на воспроизведении зацепления зубчатой пары, одним из элементов которой является режущий инструмент - червячная фреза (рис.11г), реечный долбяк-гребенка или инструментальная рейка (рис.11в). Метод обкатки является более прогрессивным, чем метод копирования.
Наиболее производительным и качественным является нарезание зубьев червячной фрезой. Червячная фреза имеет в осевом сечении форму инструментальной рейки. При нарезании зубьев заготовка и фреза вращаются вокруг своих осей, обеспечивая непрерывность процесса.
Зубья точных зубчатых колес после нарезания подвергают доводке: шевингованию, шлифованию, притирке и обкатке.
Шевингование применяют для тонкой обработки незакаленных колес. Выполняют инструментом - шевером, имеющим вид зубчатого колеса с узкими канавками на поверхности зубьев. Вращаясь в зацеплении с обрабатываемым колесом, шевер снимает режущими кромками канавок волосообразные стружки с зубьев колеса.
Шлифование применяют для обработки закаленных зубьев. Выполняют шлифовальными кругами способом копирования и обкатки.
Притирку используют для отделки закаленных зубьев колес. Выполняют притиром - чугунным точно изготовленным колесом с использованием притирочных абразивных паст.
Обкатка применяется для сглаживания шероховатостей на рабочих поверхностях зубьев незакаленных колес. В течение 1...2 мин. зубчатое колесо обкатывается под нагрузкой с эталонным колесом большой твердости.
Особенности цилиндрических прямозубых, косозубых и шевронных передач. Силы, действующие в зацеплении
Зубья цилиндрических прямозубых колес входят в зацепление сразу по всей длине. Из-за неточности в изготовлении вход и выход из зацепления зубьев может сопровождаться ударами, появляется шум при работе. Поэтому прямозубые передачи применяют при невысоких окружных скоростях (менее 10 м/с).
Силы взаимодействия между зубьями принято определять в полюсе зацепления П (рис.12). Равнодействующая сила Fn направлена по линии зацепления NN. Для расчета зубьев силу Fn раскладывают на окружную силу
и радиальную силу
.
Рис. 12 Схема сил в прямозубой цилиндрической передаче
Цилиндрические колеса, у которых зубья расположены по винтовым линиям на делительном цилиндре, называют косозубыми.
В косозубой передаче, в отличие от прямозубой, зубья входят в зацепление не сразу по всей длине, а постепенно, что значительно снижает шум и динамические нагрузки. Чем больше угол наклона зубьев β, тем выше плавность зацеплении. Косозубые колеса применяют для ответственных передач при средних и высоких скоростях. Объем их применения - свыше 30 % объема применения всех цилиндрических колес в машинах; и этот процент непрерывно возрастает. Косозубые колеса с твердыми поверхностями зубьев требуют повышенной зашиты от загрязнений во избежание неравномерного износа по длине контактных линий и опасности выкрашивания.
Угол
наклона зубьев косозубых колес выбирают
по условию, при котором осевой коэффициент
перекрытия
более
1,1 (обычно
1,1... 1,2), в
большинстве конструкций β=8...22°, в
раздвоенных ступенях редукторов для
лучшей самоустановки β>30°.
Значение угла β удобно выбирать таким, чтобы при стандартных значениях нормальных модулей межосевые расстояния аω, соответствовали приведенным в стандартах, а для встраиваемых передач по возможности выражались целыми круглыми числами. Так, например, к удобным углам для косозубых передач редукторов можно отнести угол β=8°6'34", косинус которого равен 0,99. При суммарном числе зубьев zo=99 aω=50m.
Косозубые колеса нарезают тем же инструментом, что и прямозубые, поэтому профиль косых зубьев в нормальном сечении аналогичен профилю прямых зубьев. Наклон зуба получают поворотом инструмента на угол β (напомним, что β- угол наклона зуба на делительном диаметре). Если замерять шаг (расстояние между зубьями) в торцовом и нормальном направлениях, то получим в первом случае окружной шаг рt, во втором нормальный шаг рп. Разными в этих направлениях будут и модули - нормальный mn и окружной mt:
,
.
За расчетный модуль принимают mn, значение которого должно соответствовать стандартному.
Исходным при геометрических расчетах является нормальный модуль mn. Остальные параметры и определения для косозубых колес:
- шаг окружной
или
- диаметр делительной окружности
-
высота головки зуба
;
-
высота ножки зуба
;
-диаметр вершин зубьев
;
- диаметр впадин зубьев
;
Если известен наружный диаметр , то модуль можно определить по формуле:
,
после определения округлить до стандартного значения;
- окружной модуль
;
- передаточное число цилиндрической прямозубой и косозубой передач
или
где ω1, z1 - соответственно угловая скорость и число зубьев ведущего колеса;
ω2, z2 - соответственно угловая скорость и число зубьев ведомого колеса.
В косозубой передаче нормальная сила составляет угол β с торцом колеса (рис. 13).
Рис. 13 Схема сил в косозубой цилиндрической передаче
Нормальная сила Fn может быть разложена на составляющие:
окружную силу:
,
радиальную силу:
,
осевую силу:
.
Наличие в зацеплении осевых сил является недостатком косозубой передачи, так как они дополнительно нагружают подшипники. Поскольку Fa возрастает с увеличением β, для косозубых колес принимают β = 8...22°.
Этот недостаток косозубых колес устранен в шевронных передачах (см. рис. 7 в). Шевронное колесо представляет собой сдвоенное косозубое колесо, выполненное как одно целое. Так как направление зубьев в полушевронах различное, осевая сила взаимно уравновешивается на колесе и на подшипники не передается. Это обстоятельство позволяет принимать у шевронных колес угол наклона зуба β = 25...40°, что повышает прочность зубьев и плавность передачи.
Недостатком шевронных колес является большая сложность и стоимость их изготовления. Применяют их в мощных быстроходных закрытых передачах.
