- •1. Геология и бурение нефтяных месторождений оао «сургутнефтегаз»
- •1.1. Краткая характеристика геологического строения разрабатываемых месторождений, коллекторских свойств пластов и свойств нефти
- •Классификация коллекторов нефти и газа
- •1.2. Бурение нефтяных и газовых скважин на месторождениях оао «сургутнефтегаз»
- •1.2.1. Цикл строительства скважины
- •1.2.2. Бурение горизонтальных скважин
- •1.2.3. Вскрытие и освоение нефтяных и газовых скважин
- •1.2.4. Перфорация скважин
- •1.2.5. Освоение и пуск в эксплуатацию скважин
- •1.2.6. Порядок приема скважин из бурения
- •Раздел 2. Разработка месторождений
- •2.1. Системы разработки нефтяных месторождений
- •2.2. Поддержание пластового давления
- •2.3. Стадии разработки месторождений
- •2.4. Распределение фонда скважин
- •3. Методы повышения нефтеотдачи пластов и интенсификации притока
- •3.1. Методы повышения нефтеотдачи пластов
- •3.2. Взаимоотношения между управлением «сургутнефтепромхим» и структурными подразделениями оао «сургутнефтегаз» при проведении работ по повышению нефтеотдачи пластов
- •3.3. Взаимоотношения по организации производства работ по повышению нефтеотдачи пластов с применением сдвоенного насосного агрегата на шасси kenworth
- •4. Техника и технология добычи нефти
- •4.1. Общие сведения
- •4.1.1. Структура фонда
- •4.1.2. Показатели использования фонда
- •4.2. Добыча нефти шгн
- •4.2.1. Общая схема штанговой насосной установки, ее элементы и назначение
- •4.2.2. Штанговые скважинные насосы
- •Номенклатура изготавливаемых насосов по гост р 51896-2002
- •4.2.3. Насосные штанги
- •Характеристики штанг и муфт
- •Область применения штанг
- •4.2.4. Назначение и применение дополнительного оборудования
- •4.2.5. Подбор штанговых насосных установок, дополнительного подземного оборудования и вспомогательных элементов
- •4.2.6. Прием-сдача скважин, оборудованных ушгн, в ремонт и из ремонта
- •4.2.7. Запуск и вывод на режим скважин, оборудованных ушгн, после ремонта
- •4.2.8. Эксплуатация и обслуживание скважин, оборудованных ушгн
- •4.2.9. Ревизия и комиссионные разборы усшн
- •4.3. Добыча нефти уэцн
- •4.3.1. Общие сведения об эксплуатации скважин, оборудованных установками электрических погружных центробежных насосов (уэцн)
- •4.3.2. Подбор уэцн
- •4.3.3. Подготовка скважины к спуску уэцн
- •Диаметры шаблона
- •4.3.4. Размещение наземного оборудования уэцн на площадке куста скважин
- •4.3.5. Запуск и вывод уэцн на постоянный режим работы
- •Время появления подачи уэцн на устье скважин после запуска
- •4.3.6. Основные осложнения при запуске, выводе на режим и эксплуатации уэцн
- •4.3.7. Подъем установки эцн
- •4.3.8. Порядок расследования причин неэффективных ремонтов скважин, оборудованных уэцн
- •4.4. Эксплуатация уэцн с использованием станций управления с частотным преобразователем
- •4.4.1. Общие сведения
- •4.4.2. Область применения су c чп
- •4.4.3. Подбор скважин для внедрения су с чп
- •4.4.4. Организация производства работ
- •4.4.5. Вывод на режим
- •4.4.6. Техническое обслуживание
- •5. Система ппд, строительство
- •5.1. Система поддержания пластового давления
- •Конструкции водозаборных скважин
- •Технические характеристики
- •5.2. Строительство и эксплуатация
- •5.2.1. Назначение и классификация трубопроводов
- •5.2.2. Проектирование трубопроводов, контроль качества строительства, технический надзор
- •5.3. Эксплуатация трубопроводов
- •5.4. Техническое обслуживание и ремонт трубопроводов
- •Периодичность ревизии трубопроводов
- •5.5.Защита трубопроводов от коррозии
- •Паспорт трубопровода
- •Данные о монтаже
- •Б. Фланцы и крепежные детали
- •Результаты испытания
- •Заключение
- •Результаты измерений и прогноза
- •Регистрация трубопровода
- •Акт испытания трубопроводов на прочность и плотность
- •Технического расследования некатегорийного отказа трубопровода
- •Инструкция по ведению и хранению паспортов на нефтепромысловые трубопроводы
- •6. Оборудование скважин уэцн
- •6.1. Погружные установки для добычи нефти
- •6.1.1. Краткие сведения по добыче нефти установками электроприводного погружного центробежного насоса
- •6.1.2. Комплектность уэцн
- •6.1.3. Конструктивные особенности уэцн
- •6.1.4. Электродвигатели погружные асинхронные типа пэд
- •Основные характеристики
- •6.1.5. Погружной кабель для уэцн
- •6.1.6. Применение газосепараторов и диспергаторов в составе уэцн
- •Технические данные диспергаторов
- •6.1.7. Коструктивные особенности уэцн импортного производства
- •Параметры насосов фирмы odi
- •6.2. Наземное электрооборудование уэцн
- •6.2.1. Станции управления уэцн
- •6.2.2. Трансформаторы серии тмпн
- •6.3. Монтаж и эксплуатация уэцн
- •6.3.1. Монтаж уэцн на скважине
- •6.3.2. Спуск уэцн в скважину
- •6.3.3. Запуск и вывод уэцн на режим
- •6.3.4. Демонтаж уэцн (по видам гидрозащит)
- •6.3.5. Монтаж уэцн импортного производства
- •6.4. Оборудование для добычи сеноманской и артезианской воды
- •Технические характеристики агрегатов центробежных скважинных типа эцв для скважин ппд
- •Комплектация и технические характеристики установок электроцентробежных насосов
- •7. Фонтанная эксплуатация скважин
- •7.1. Теоретические основы фонтанирования скважин
- •7.2. Оборудование для эксплуатации фонтанирующих скважин
- •7.3. Исследование фонтанных скважин. Регулирование работы
- •7.4. Осложнения в работе фонтанных скважин и их предупреждение
- •8. Эксплуатация осложненного фонда добывающих скважин
- •8.1. Асфальтосмолопарафиновые отложения (аспо)
- •8.1.1. Причины и условия асфальтосмолопарафиновых отложений
- •8.1.2. Методы борьбы с аспо
- •90° Направление ветра скважина а ц№2
- •8.2. Солеотложения
- •8.2.1. Причины возникновения солеотложений
- •8.2.2. Борьба с солеотложениями
- •8.3. Коррозия
- •8.3.1. Причины возникновения коррозии
- •8.3.2. Способы защиты от коррозии
- •8.4. Образование гидратных отложений
- •8.4.1. Механизм образования гидратных отложений
- •8.4.2. Методы предупреждения гидратообразований и борьба с гидратоотложениями
- •8.5. Прочие осложнения
- •8.5.1. Влияние свободного газа на работу насосов шгн
- •8.5.2. Осложнения при образовании песчаных пробок
- •8.5.3. Особенности откачки высоковязких сортов нефти и водонефтяных эмульсий
- •8.5.4. Осложнения при эксплуатации наклонно-направленных скважин установками шгн с интенсивностью набора кривизны более 2о на 10 м
- •8.5.5. Обводнение скважин с темпом выше проектного
- •9. Исследование скважин
- •9.1. Промыслово-гидродинамические исследования
- •Исследований
- •9.2. Промыслово-геофизические исследования
- •10. Текущий и капитальный ремонт скважин
- •10.1. Подготовка скважины к ремонту
- •10.2. Производство работ по глушению
- •10.2.1. Основные положения
- •10.2.2. Подготовка скважины к глушению
- •10.2.3. Технология глушения скважин
- •10.2.4. Глушение фонтанных, газовых и нагнетательных скважин
- •10.2.5. Глушение скважин, оборудованных шгн
- •10.2.6. Глушение скважин, оборудованных уэцн
- •10.2.7. Инструкция по расчету циклического глушения механизированных скважин Исходные данные
- •10.2.8. Осложненное глушение
- •10.3. Текущий ремонт скважин
- •10.3.1 Классификатор текущих ремонтов скважин
- •10.4. Капитальный ремонт скважин
- •10.4.1. Классификатор капитальных ремонтов скважин
- •10.4.2. Классификатор капитальных ремонтов скважин, выполняемых бригадами Сургутского упнПиКрс с использованием установок «Непрерывная труба»
- •10.5. Основные операции, проводимые
- •10.5.1. Спуск-подъем гно
- •10.5.2. Шаблонирование ствола скважины
- •Диаметры шаблона
- •10.5.3. Внедрение отсекателей пласта
- •10.5.4. Геофизические исследования скважин
- •10.5.5. Промывка забоя скважины
- •10.5.6. Обработки призабойной зоны продуктивного пласта (опз)
- •10.5.7. Гидравлический разрыв пластов
- •10.5.8. Забуривание боковых стволов
- •10.5.9. Забуривание боковых стволов на депрессии
- •10.5.10. Ремонтно-изоляционные работы
- •10.5.11. Ловильные работы, ликвидация аварий
- •10.6. Перечень работ в текущем и капитальном ремонте скважин, при выполнении которых обязательно присутствие мастера или ответственного инженерно-технического работника (итр)
- •Перечень работ в текущем и капитальном ремонте скважин
- •10.7. Основные виды оборудования и инструмента, применяемые при текущем и капитальном ремонте скважин
- •10.7.1. Подъемные агрегаты
- •10.7.2. Оборудование и инструмент, применяемые при спуско-подъемных операциях
- •Технические характеристики элеваторов эш
- •10.7.3. Ловильный инструмент
- •10.7.4. Пакерно-якорное оборудование
- •10.8. Предупреждение и ликвидация газонефтеводопроявлений при ремонте скважин
- •Содержание
- •1. Геология и бурение нефтяных месторождений
- •2. Разработка месторождений 29
- •3. Методы повышения нефтеотдачи пластов
10.5.7. Гидравлический разрыв пластов
Гидравлический разрыв пласта (ГРП) – наиболее эффективный способ увеличения нефтеотдачи при разработке пластов с низкими фильтрационно-емкостными свойствами. ГРП радикально изменяет проницаемость в при-забойных зонах и пластах путем создания макротрещин протяженностью 100 м и более, закрепляемых зернистым заполнителем. Для осуществления ГРП в скважину закачивают жидкость под таким давлением и с таким расходом, чтобы обеспечить расширение естественных трещин и создание по обе стороны ствола двух направленных в противоположные стороны искусственных трещин. Порода разрывается по плоскостям минимальной прочности, ориентация трещины определяется сложнонапряженным состоянием пород и направлением их естественной трещиноватости. Эффективность трещин определяется: надежностью их создания, максимальным повышением продуктивности скважины, их проводимостью и долгосрочной стабильностью.
В технологии ГРП применяют жидкости гидроразрыва пласта, жидкости-песконосители и продавочные жидкости. В большинстве случаев один тип жидкости выполняет все три функции. В качестве жидкостей разрыва используются водно-полимерные композиции, растворы ПАВ, эмульсии, пены. При осуществлении ГРП могут применяться три способа передачи гидравлической энергии на забой скважины: по НКТ, кольцевому пространству, по кольцевому пространству и НКТ одновременно. Заполняют образованные при ГРП трещины расклинивающим материалом – проппантом.
Закачиваемый в трещины проппант может располагаться в них как толстым слоем, превышающим диаметр зерен, так и слоем в одно зерно. При создании трещин в породах, обладающих малой прочностью, более надежным является закрепление толстым слоем проппанта. Наличие тонкого слоя проппанта может привести к смыканию трещин за счет вдавливания зерен в стенки трещины. Выбор размера частиц расклинивающего материала не должен быть случайным, чтобы обеспечить после проведения гидроразрыва высокую проницаемость призабойной зоны.
Подготовка скважины к ГРП включает в себя подготовительные работы в скважине, на которой планируется проведение операции, и подготовку территории кустовой (прискважинной) площадки для размещения агрегатов комплекса ГРП и технологических емкостей в зависимости от типа ГРП.
Подготовительные работы к проведению ГРП включают в себя:
глушение скважины. Работы по глушению скважин должны проводиться в соответствии с действующей инструкцией на глушение скважин ОАО «Сургутнефтегаз», с использованием жидкостей, не ухудшающих состояние призабойной зоны пласта и облегчающих в последующем освоение скважины, или других составов, предусмотренных в руководящих документах для данного пласта;
монтаж подъемного агрегата и расстановку бригадного оборудования;
подъем подземного оборудования;
промывка забоя скважины, шаблонировка ствола и, в случае необходимости, реперфорация;
проведение комплекса ГИС;
спуск-подъем гидравлического скрепера и скреперование интервала установки пакера;
спуск пакера на НКТ-89 мм марки прочности не ниже «Л». В отдельных случаях (ГРП в БС) допускается использование комбинированной подвески НКТ различных диаметров, с маркой прочности не менее «Л»;
посадка пакера и его опрессовка;
оборудование устья скважины специальной арматурой, опрессовка устья;
демонтаж подъемного агрегата.
Оборудование, используемое при проведении ГРП:
пескосмеситель (блендер) – 1–2 ед.;
насосные агрегаты – 4–7 ед.;
блок манифольдов – 1–2 ед.;
комплект НКТ – 1 ед.;
песковоз – 1–5 ед.;
машина химических добавок –1–2 ед.;
станция управления – 1 ед.;
передвижные емкости объемом 40–50 м3 – 2–8 шт.;
кислотный агрегат АККП500 или аналог – 1 ед.;
вспомогательная спецтехника (ЦА-320, ППУ, АДП, АЦ, К-700 и др.).
Рис. 8. Схема обвязки устья скважины при проведении гидравлического разрыва пласта (с установленной катушкой промывочной КП-4):
1 – устьевая запорная арматура ГРП; 2 – крестовина фонтанной арматуры;
3 – манометр с краном высокого давления; 4 – задвижка фонтанной арматуры;
5 – колонная головка (ОУС, ОКК, ОКО и т.д.); 6 – быстроразъемное соединение;
7 – катушка промывочная КП-4
Непосредственно операция по ГРП включает в себя:
проведение «мини-фрака» (при необходимости) и корректировка на его основе расчета ГРП;
последовательную закачку оторочек композиций химреагентов и технологической жидкости в объемах и на режимах, предусмотренных расчетом ГРП;
закачку технологической жидкости – песконосителя – с постепенным увеличением концентрации проппанта в соответствии с утвержденным расчетом проведения разрыва;
нагнетание оторочки продавочной жидкостью в объеме, обеспечивающем закачку геля с проппантом в пласт.
После проведения ГРП по окончании закачки продавочной жидкости скважина оставляется на время, необходимое для распада геля.
Заключительные работы после проведения ГРП:
отстой скважины в течение 24 часов для распада геля;
отработка скважины; во избежание выноса проппанта отработка ведется через штуцер с дебитом не выше 0,5 м3/ч (12 м3/сут);
монтаж подъемного агрегата и расстановка бригадного оборудования;
демонтаж устьевого оборудования, срыв пакера, замена объема жидкости в НКТ жидкостью глушения;
монтаж ПВО;
подъем пакера;
промывка забоя скважины (в случае получения режима «СТОП» для ускорения ввода скважины в эксплуатацию промывка НКТ и подпакерной зоны проводится установкой «Непрерывная труба»);
проведение комплекса геофизических исследований по определению технического состояния эксплуатационной колонны; профиля притока для добывающих скважин, профиля приемистости для нагнетательных скважин; проведение исследований упругих свойств пласта методом широкополосной акустики;
спуск в скважину подземного оборудования;
запуск оборудования в работу с представителем ЦДНГ, сдача скважины ЦДНГ;
мероприятия по утилизации неизрасходованного (приготовленного) геля.
Таблица 5
Перечень применяемых технологий при ГРП, их краткое описание
Наименование технологии |
Краткое описание операций |
Область применения |
1. Стандартный ГРП |
Нагнетание в пласт геля с увеличивающимся во времени расходом до разрыва пласта, развитие трещины при постоянном режиме нагнетания геля(2-5 м3/мин), заполнение трещины проппантом при повышении во времени его концентрации в геле (до 1 500 кг/ м3) общей массой до 30 т |
Продуктивные пласты толщиной до 15 м с проницаемостью более 40 мД и малой расчлененностью с экранами большой (более 10 м) толщины; фронт вытеснения не ближе половины расстояния между скважинами |
2. Повторный ГРП |
Применяется наиболее соответствующая объекту технология ГРП |
Скважины, в которых целесообразна корректировка геометрических размеров и проводимости ранее созданных трещин |
3 Объемные ГРП |
Нагнетание в пласт геля с увеличивающимся во времени расходом до разрыва пласта, развитие трещины при постоянном режиме нагнетания геля (2-5 м3/мин), заполнение трещины проппантом при повышении во времени его концентрации в геле (до 1 500 кг/ м3) общей массы от 30 до 60 т |
Продуктивные пласты толщиной до 20 м с проницаемостью менее 40 мД и малой расчлененностью с экранами большой (более 10 м) толщины; фронт вытеснения не ближе половины расстояния между скважинами |
4. Большеобъемный (массированный) ГРП |
Стандартный ГРП с большим расходом проппанта (более 60 т); выполняется с предварительной дополнительной перфорацией и кислотным ОПЗ |
Продуктивные пласты толщиной более 15 м с проницаемостью не более 40 мД и большой расчлененностью (толщина глинистых пропластков не более 4 м) с экранами большой (более 10 м) толщины; фронт вытеснения не ближе половины расстояния между скважинами |
Окончание таблицы 5
Наименование технологии |
Краткое описание операций |
Область применения |
5. Многоэтапный ГРП |
Последовательное проведение ГРП в пределах подготовленных интервалов пласта. Подготовкой предусматривается временная изоляция всех интервалов пласта (установ ка пакера, отсыпка и т.д.), кроме обрабаты ваемого |
Продуктивные пласты большой мощности (более 20 м) с глинистыми прослоями толщиной более 4 м |
6. Селективный ГРП |
Стандартный ГРП с инициацией начала разрыва (дополнительная перфорация, ОПЗ, временная изоляция не обрабатываемых интервалов) и развития трещины в пределах заданного интервала пласта |
Продуктивные пласты с высокой расчлененностью (глинистые прослои толщиной более 2 м) и неоднородностью ФЕС и нефтенасыщенности |
7. Изоляционный (экрано-устанавливающий) ГРП |
Стандартный ГРП с дополнительной закачки оторочки изолирующего материала перед стадией заполнения трещины проппантом |
Продуктивные пласты малой толщиной экранов (менее 3 м), отделяющих от водоносных пластов |
8. Кислотный ГРП |
Стандартный ГРП с дополнительной закачки оторочки концентрированной кислоты перед стадией заполнения трещины проппантом |
Карбонатный коллектор |
9. ГРП с технологической остановкой |
Стандартный ГРП с кратковременной остановкой подачи жидкости разрыва (геля) на стадии развития трещины перед ее заполнением проппантом |
Продуктивные пласты толщиной до 20 м с проницаемостью более 40 мД и большой расчлененностью с экранами большой (более 10 м) толщины; фронт вытеснения не ближе половины расстояния между скважинами |
10. TSO (Tip Screen Out) метод кольцевого экранирования |
Стандартный ГРП с кратковременной остановкой подачи проппанта, вследствие чего в трещине создается «песчаная пробка». В дальнейшем режим подачи проппанта выбирается таким образом, чтобы обеспечить его намыв в трещину от «песчаной пробки» до интервала перфорации |
Продуктивные пласты большой проницаемости (более 100 мД) с толщиной более 15 м с проницаемостью более 40 мд и большой расчлененностью с экранами большой (более 10 м) толщины; фронт вытеснения ближе половины расстояния между скважинами |
11. ГРП с обратным потоком |
Применяется для искусственного до уплотнения трещин ГРП |
Пласт толщиной более 10 м и экраном менее 3 м с высокой (более 40 мД) проницаемостью |
12. ГРП по технологии InvertoFrac или DivertoFrac |
Технология ограничения высоты развития трещины путем создания пробки проппанта в нижней или верхней части трещины |
Пласт толщиной менее 10 м и экраном менее 3 м с низкой (менее 40 мД) проницаемостью |
13. «Струйный» ГРП |
Разрыв пласта осуществляется из каверн в ПЗП, созданных гидроперфоратором, за счет преобразования кинетической энергии струи в энергию давления торможения. Операция производится без посадки пакера при давлении в колонне скважины ниже бокового горного давления. Это дает возможность выполнения многоэтапных ГРП без нарушения структуры ранее созданных трещин. Технология позволяет выполнять многоэтапные ГРП в горизонтальных скважинах с образованием трещин вдоль и поперек ствола |
Продуктивные пласты, изолированные экранами от водоносных или газонасыщенных толщ |
