- •1. Геология и бурение нефтяных месторождений оао «сургутнефтегаз»
- •1.1. Краткая характеристика геологического строения разрабатываемых месторождений, коллекторских свойств пластов и свойств нефти
- •Классификация коллекторов нефти и газа
- •1.2. Бурение нефтяных и газовых скважин на месторождениях оао «сургутнефтегаз»
- •1.2.1. Цикл строительства скважины
- •1.2.2. Бурение горизонтальных скважин
- •1.2.3. Вскрытие и освоение нефтяных и газовых скважин
- •1.2.4. Перфорация скважин
- •1.2.5. Освоение и пуск в эксплуатацию скважин
- •1.2.6. Порядок приема скважин из бурения
- •Раздел 2. Разработка месторождений
- •2.1. Системы разработки нефтяных месторождений
- •2.2. Поддержание пластового давления
- •2.3. Стадии разработки месторождений
- •2.4. Распределение фонда скважин
- •3. Методы повышения нефтеотдачи пластов и интенсификации притока
- •3.1. Методы повышения нефтеотдачи пластов
- •3.2. Взаимоотношения между управлением «сургутнефтепромхим» и структурными подразделениями оао «сургутнефтегаз» при проведении работ по повышению нефтеотдачи пластов
- •3.3. Взаимоотношения по организации производства работ по повышению нефтеотдачи пластов с применением сдвоенного насосного агрегата на шасси kenworth
- •4. Техника и технология добычи нефти
- •4.1. Общие сведения
- •4.1.1. Структура фонда
- •4.1.2. Показатели использования фонда
- •4.2. Добыча нефти шгн
- •4.2.1. Общая схема штанговой насосной установки, ее элементы и назначение
- •4.2.2. Штанговые скважинные насосы
- •Номенклатура изготавливаемых насосов по гост р 51896-2002
- •4.2.3. Насосные штанги
- •Характеристики штанг и муфт
- •Область применения штанг
- •4.2.4. Назначение и применение дополнительного оборудования
- •4.2.5. Подбор штанговых насосных установок, дополнительного подземного оборудования и вспомогательных элементов
- •4.2.6. Прием-сдача скважин, оборудованных ушгн, в ремонт и из ремонта
- •4.2.7. Запуск и вывод на режим скважин, оборудованных ушгн, после ремонта
- •4.2.8. Эксплуатация и обслуживание скважин, оборудованных ушгн
- •4.2.9. Ревизия и комиссионные разборы усшн
- •4.3. Добыча нефти уэцн
- •4.3.1. Общие сведения об эксплуатации скважин, оборудованных установками электрических погружных центробежных насосов (уэцн)
- •4.3.2. Подбор уэцн
- •4.3.3. Подготовка скважины к спуску уэцн
- •Диаметры шаблона
- •4.3.4. Размещение наземного оборудования уэцн на площадке куста скважин
- •4.3.5. Запуск и вывод уэцн на постоянный режим работы
- •Время появления подачи уэцн на устье скважин после запуска
- •4.3.6. Основные осложнения при запуске, выводе на режим и эксплуатации уэцн
- •4.3.7. Подъем установки эцн
- •4.3.8. Порядок расследования причин неэффективных ремонтов скважин, оборудованных уэцн
- •4.4. Эксплуатация уэцн с использованием станций управления с частотным преобразователем
- •4.4.1. Общие сведения
- •4.4.2. Область применения су c чп
- •4.4.3. Подбор скважин для внедрения су с чп
- •4.4.4. Организация производства работ
- •4.4.5. Вывод на режим
- •4.4.6. Техническое обслуживание
- •5. Система ппд, строительство
- •5.1. Система поддержания пластового давления
- •Конструкции водозаборных скважин
- •Технические характеристики
- •5.2. Строительство и эксплуатация
- •5.2.1. Назначение и классификация трубопроводов
- •5.2.2. Проектирование трубопроводов, контроль качества строительства, технический надзор
- •5.3. Эксплуатация трубопроводов
- •5.4. Техническое обслуживание и ремонт трубопроводов
- •Периодичность ревизии трубопроводов
- •5.5.Защита трубопроводов от коррозии
- •Паспорт трубопровода
- •Данные о монтаже
- •Б. Фланцы и крепежные детали
- •Результаты испытания
- •Заключение
- •Результаты измерений и прогноза
- •Регистрация трубопровода
- •Акт испытания трубопроводов на прочность и плотность
- •Технического расследования некатегорийного отказа трубопровода
- •Инструкция по ведению и хранению паспортов на нефтепромысловые трубопроводы
- •6. Оборудование скважин уэцн
- •6.1. Погружные установки для добычи нефти
- •6.1.1. Краткие сведения по добыче нефти установками электроприводного погружного центробежного насоса
- •6.1.2. Комплектность уэцн
- •6.1.3. Конструктивные особенности уэцн
- •6.1.4. Электродвигатели погружные асинхронные типа пэд
- •Основные характеристики
- •6.1.5. Погружной кабель для уэцн
- •6.1.6. Применение газосепараторов и диспергаторов в составе уэцн
- •Технические данные диспергаторов
- •6.1.7. Коструктивные особенности уэцн импортного производства
- •Параметры насосов фирмы odi
- •6.2. Наземное электрооборудование уэцн
- •6.2.1. Станции управления уэцн
- •6.2.2. Трансформаторы серии тмпн
- •6.3. Монтаж и эксплуатация уэцн
- •6.3.1. Монтаж уэцн на скважине
- •6.3.2. Спуск уэцн в скважину
- •6.3.3. Запуск и вывод уэцн на режим
- •6.3.4. Демонтаж уэцн (по видам гидрозащит)
- •6.3.5. Монтаж уэцн импортного производства
- •6.4. Оборудование для добычи сеноманской и артезианской воды
- •Технические характеристики агрегатов центробежных скважинных типа эцв для скважин ппд
- •Комплектация и технические характеристики установок электроцентробежных насосов
- •7. Фонтанная эксплуатация скважин
- •7.1. Теоретические основы фонтанирования скважин
- •7.2. Оборудование для эксплуатации фонтанирующих скважин
- •7.3. Исследование фонтанных скважин. Регулирование работы
- •7.4. Осложнения в работе фонтанных скважин и их предупреждение
- •8. Эксплуатация осложненного фонда добывающих скважин
- •8.1. Асфальтосмолопарафиновые отложения (аспо)
- •8.1.1. Причины и условия асфальтосмолопарафиновых отложений
- •8.1.2. Методы борьбы с аспо
- •90° Направление ветра скважина а ц№2
- •8.2. Солеотложения
- •8.2.1. Причины возникновения солеотложений
- •8.2.2. Борьба с солеотложениями
- •8.3. Коррозия
- •8.3.1. Причины возникновения коррозии
- •8.3.2. Способы защиты от коррозии
- •8.4. Образование гидратных отложений
- •8.4.1. Механизм образования гидратных отложений
- •8.4.2. Методы предупреждения гидратообразований и борьба с гидратоотложениями
- •8.5. Прочие осложнения
- •8.5.1. Влияние свободного газа на работу насосов шгн
- •8.5.2. Осложнения при образовании песчаных пробок
- •8.5.3. Особенности откачки высоковязких сортов нефти и водонефтяных эмульсий
- •8.5.4. Осложнения при эксплуатации наклонно-направленных скважин установками шгн с интенсивностью набора кривизны более 2о на 10 м
- •8.5.5. Обводнение скважин с темпом выше проектного
- •9. Исследование скважин
- •9.1. Промыслово-гидродинамические исследования
- •Исследований
- •9.2. Промыслово-геофизические исследования
- •10. Текущий и капитальный ремонт скважин
- •10.1. Подготовка скважины к ремонту
- •10.2. Производство работ по глушению
- •10.2.1. Основные положения
- •10.2.2. Подготовка скважины к глушению
- •10.2.3. Технология глушения скважин
- •10.2.4. Глушение фонтанных, газовых и нагнетательных скважин
- •10.2.5. Глушение скважин, оборудованных шгн
- •10.2.6. Глушение скважин, оборудованных уэцн
- •10.2.7. Инструкция по расчету циклического глушения механизированных скважин Исходные данные
- •10.2.8. Осложненное глушение
- •10.3. Текущий ремонт скважин
- •10.3.1 Классификатор текущих ремонтов скважин
- •10.4. Капитальный ремонт скважин
- •10.4.1. Классификатор капитальных ремонтов скважин
- •10.4.2. Классификатор капитальных ремонтов скважин, выполняемых бригадами Сургутского упнПиКрс с использованием установок «Непрерывная труба»
- •10.5. Основные операции, проводимые
- •10.5.1. Спуск-подъем гно
- •10.5.2. Шаблонирование ствола скважины
- •Диаметры шаблона
- •10.5.3. Внедрение отсекателей пласта
- •10.5.4. Геофизические исследования скважин
- •10.5.5. Промывка забоя скважины
- •10.5.6. Обработки призабойной зоны продуктивного пласта (опз)
- •10.5.7. Гидравлический разрыв пластов
- •10.5.8. Забуривание боковых стволов
- •10.5.9. Забуривание боковых стволов на депрессии
- •10.5.10. Ремонтно-изоляционные работы
- •10.5.11. Ловильные работы, ликвидация аварий
- •10.6. Перечень работ в текущем и капитальном ремонте скважин, при выполнении которых обязательно присутствие мастера или ответственного инженерно-технического работника (итр)
- •Перечень работ в текущем и капитальном ремонте скважин
- •10.7. Основные виды оборудования и инструмента, применяемые при текущем и капитальном ремонте скважин
- •10.7.1. Подъемные агрегаты
- •10.7.2. Оборудование и инструмент, применяемые при спуско-подъемных операциях
- •Технические характеристики элеваторов эш
- •10.7.3. Ловильный инструмент
- •10.7.4. Пакерно-якорное оборудование
- •10.8. Предупреждение и ликвидация газонефтеводопроявлений при ремонте скважин
- •Содержание
- •1. Геология и бурение нефтяных месторождений
- •2. Разработка месторождений 29
- •3. Методы повышения нефтеотдачи пластов
10.5.6. Обработки призабойной зоны продуктивного пласта (опз)
ОПЗ проводят на всех этапах разработки нефтяного месторождения (залежи) для восстановления и повышения фильтрационных характеристик призабойной зоны пласта (ПЗП) с целью увеличения производительности добывающих и приемистости нагнетательных скважин. Выбор способа ОПЗ осуществляют на основе изучения причин низкой продуктивности скважин с учетом физико-химических свойств пород пласта-коллектора и насыщающих их флюидов, а также специальных гидродинамических и геофизических исследований по оценке фильтрационных характеристик ПЗП. ОПЗ проводят только в технически исправных скважинах при условии герметичности эксплуатационной колонны и цементного кольца, подтвержденной геофизическими исследованиями. Технологию и периодичность проведения работ по воздействию на ПЗП обосновывают геологические и технологические службы нефтегазодобывающих управлений в соответствии с проектом разработки месторождения, действующими инструкциями (РД) по отдельным видам ОПЗ с учетом технико-экономической оценки их эффективности.
Проведение подготовительных работ для всех видов ОПЗ обязательно и заключается в обеспечении необходимым оборудованием и инструментом, а также в подготовке ствола скважины, забоя и фильтра к обработке.
В скважинах, по которым подземное оборудование не обеспечивает проведения работ по ОПЗ, например, оборудованных глубинным насосом, производят подъем подземного оборудования и спуск колонны НКТ, а также другого необходимого оборудования.
После проведения ОПЗ исследуют скважины методами установившихся и неустановившихся отборов на режимах (при депрессиях), соответствующих режимам исследования скважин перед ОПЗ.
Для очистки фильтра скважины и призабойной зоны пласта от различных загрязнений в зависимости от причин и геолого-технических условий проводят следующие технологические операции.
Кислотная обработка
Существуют следующие виды кислотных обработок:
– солянокислотная обработка (СКО) основана на способности соляной кислоты проникать вглубь пласта, растворяя карбонатные породы. В результате на значительном расстоянии от ствола скважины развивается сеть расширенных поровых каналов, что значительно увеличивает фильтрационные свойства призабойной зоны пласта и приводит к повышению продуктивности скважин. При обработке карбонатных коллекторов, содержащих соединения железа, при использовании соляной кислоты дополнительно вводят уксусную или лимонную кислоты для предупреждения осадкообразования в растворе;
– глинокислотная обработка (ГКО) наиболее эффективна в коллекторах, состоящих из песчаников с глинистым цементом, и представляет собой смесь плавиковой и соляной кислот. При взаимодействии этой смеси с породой растворяются глинистые составляющие и частично кварцевый песок. Глина утрачивает пластичность и способность к разбуханию, а ее взвесь в воде теряет свойство коллоидного раствора.
Коллекторы, содержащие осадкообразующие включения, обрабатывают уксусной или сульфаминовой кислотами. В трещинных и трещинно-поровых коллекторах для глубокой (по простиранию) обработки используют замедленно взаимодействующие с карбонатами составы на основе соляной кислоты, дисперсные системы типа эмульсий и загущенных растворов.
Объем кислотного раствора и время выдерживания его в пласте выбирают в зависимости от вида воздействия, рецептуры применяемого состава и геолого-технических условий (толщина, пористость, проницаемость, забойная температура, давление пласта).
Виброобработка
Виброобработку производят в скважинах с загрязненной ПЗП; в коллекторах, сложенных низкопроницаемыми породами, содержащими глинистые минералы; в литологически неоднородных коллекторах с воздействием на низкопроницаемые пропластки; перед химической обработкой; перед ГРП или другими методами воздействия на ПЗП. Запрещается проведение виброобработки в скважинах, расположенных вблизи водо-нефтяного контакта, при интенсивных поглощениях жидкости пластом, при низких пластовых давлениях.
Для проведения технологического процесса в обрабатываемый интервал на НКТ опускают гидравлический золотниковый вибратор типа ГВГ. При давлениях закачивания свыше 40 МПа применяют пакеры. Величину гидравлического импульса определяют в зависимости от расхода рабочей жидкости и времени перекрытия ее потока.
Термообработка
Термообработку ПЗП проводят в коллекторах с тяжелыми парафини-стыми нефтями при пластовых температурах, близких к температуре кристаллизации парафина или ниже нее.
При термообработке перенос тепла в коллектор осуществляют:
– при теплопередаче по скелету породы и насыщающей жидкости от источника тепла, расположенного в скважине (метод кондуктивного прогрева);
– при принудительном теплопереносе по коллектору за счет нагнетания в пласт теплоносителя (паротепловая обработка).
Выбор метода теплообработки осуществляют в зависимости от конкретных геолого-промысловых условий:
метод индуктивного прогрева осуществляют с использованием глубинных электронагревателей. Температура нагрева должна быть ниже точки коксования нефти. При периодической тепловой обработке после извлечения из скважины эксплуатационного оборудования опускают на кабеле-тросе в интервал продуктивного пласта глубинный электронагреватель и осуществляют прогрев в течение 3-7 суток. Продолжительность пуска скважины в эксплуатацию после тепловой обработки не должна превышать 7 ч;
при стационарной электротепловой обработке совместно с подземным оборудованием в интервале фильтра устанавливают стационарный электронагреватель, с помощью которого осуществляют прогрев постоянно или по заданному режиму;
при паротепловой обработке прогрев ПЗП осуществляют насыщенным паром с помощью стационарных или передвижных парогенераторов ППГУ-4/120. Паротепловые обработки проводят в скважинах глубиной не более 1 000 м в коллекторах, содержащих нефть с вязкостью в пластовых условиях свыше 50 мПа·с. Перед проведением процесса скважину останавливают, извлекают эксплуатационное оборудование и проверяют герметичность эксплуатационной колонны. Нагнетание пара осуществляют с таким расчетом, чтобы паровая зона образовалась в радиусе от 10 до 20 м. Затем скважину герметизируют и выдерживают в течение 2–3 суток.
Циклическое воздействие путем создания управляемых депрессий на пласт с использованием струйных насосов
Сущность технологии состоит в создании знакопеременных нагрузок на пласт. Для этого в подготовленную скважину на технологических трубах спускается подземное оборудование – хвостовик, пакерное устройство, струйный насос. После установки пакера, предназначенного
для отсечения продуктивного горизонта от ствола скважины, насосным агрегатом прокачивается рабочая жидкость во внутреннюю полость труб. При прохождении потока рабочей жидкости через струйный насос в подпакерной зоне создается пониженное давление – депрессия, вследствие чего жидкость из подпакерной зоны поступает в затрубное пространство и вместе с отработавшей рабочей жидкостью выносится на поверхность. После прекращения подачи рабочей жидкости гидростатическое давление в подпакерной зоне восстанавливается и происходит обратный процесс перетока жидкости из затрубного пространства в подпакерную зону. В дальнейшем цикл многократно повторяется.
В результате циклического воздействия на пласт в режиме «депрессия – репрессия» в продуктивном горизонте возникают силы сдвига, направленные из пласта к скважине, что приводит к разрушению коль-матированной зоны ствола скважины. В связи с неодинаковой скоростью распространения депрессионной воронки по скелету породы, пластовому флюиду и дисперсной фазе между ними возникают перепады скорости, что способствует отделению дисперсионных частиц и дальнейшему перемещению их в ствол скважины, вследствие чего происходит очищение ПЗП. Особенностью технологии является то, что она позволяет создавать заданную депрессию на пласт и при необходимости управлять ее величиной и продолжительностью, а также производить циклическое многократное воздействие на ПЗП или непрерывную откачку пластового флюида.
