- •1. Геология и бурение нефтяных месторождений оао «сургутнефтегаз»
- •1.1. Краткая характеристика геологического строения разрабатываемых месторождений, коллекторских свойств пластов и свойств нефти
- •Классификация коллекторов нефти и газа
- •1.2. Бурение нефтяных и газовых скважин на месторождениях оао «сургутнефтегаз»
- •1.2.1. Цикл строительства скважины
- •1.2.2. Бурение горизонтальных скважин
- •1.2.3. Вскрытие и освоение нефтяных и газовых скважин
- •1.2.4. Перфорация скважин
- •1.2.5. Освоение и пуск в эксплуатацию скважин
- •1.2.6. Порядок приема скважин из бурения
- •Раздел 2. Разработка месторождений
- •2.1. Системы разработки нефтяных месторождений
- •2.2. Поддержание пластового давления
- •2.3. Стадии разработки месторождений
- •2.4. Распределение фонда скважин
- •3. Методы повышения нефтеотдачи пластов и интенсификации притока
- •3.1. Методы повышения нефтеотдачи пластов
- •3.2. Взаимоотношения между управлением «сургутнефтепромхим» и структурными подразделениями оао «сургутнефтегаз» при проведении работ по повышению нефтеотдачи пластов
- •3.3. Взаимоотношения по организации производства работ по повышению нефтеотдачи пластов с применением сдвоенного насосного агрегата на шасси kenworth
- •4. Техника и технология добычи нефти
- •4.1. Общие сведения
- •4.1.1. Структура фонда
- •4.1.2. Показатели использования фонда
- •4.2. Добыча нефти шгн
- •4.2.1. Общая схема штанговой насосной установки, ее элементы и назначение
- •4.2.2. Штанговые скважинные насосы
- •Номенклатура изготавливаемых насосов по гост р 51896-2002
- •4.2.3. Насосные штанги
- •Характеристики штанг и муфт
- •Область применения штанг
- •4.2.4. Назначение и применение дополнительного оборудования
- •4.2.5. Подбор штанговых насосных установок, дополнительного подземного оборудования и вспомогательных элементов
- •4.2.6. Прием-сдача скважин, оборудованных ушгн, в ремонт и из ремонта
- •4.2.7. Запуск и вывод на режим скважин, оборудованных ушгн, после ремонта
- •4.2.8. Эксплуатация и обслуживание скважин, оборудованных ушгн
- •4.2.9. Ревизия и комиссионные разборы усшн
- •4.3. Добыча нефти уэцн
- •4.3.1. Общие сведения об эксплуатации скважин, оборудованных установками электрических погружных центробежных насосов (уэцн)
- •4.3.2. Подбор уэцн
- •4.3.3. Подготовка скважины к спуску уэцн
- •Диаметры шаблона
- •4.3.4. Размещение наземного оборудования уэцн на площадке куста скважин
- •4.3.5. Запуск и вывод уэцн на постоянный режим работы
- •Время появления подачи уэцн на устье скважин после запуска
- •4.3.6. Основные осложнения при запуске, выводе на режим и эксплуатации уэцн
- •4.3.7. Подъем установки эцн
- •4.3.8. Порядок расследования причин неэффективных ремонтов скважин, оборудованных уэцн
- •4.4. Эксплуатация уэцн с использованием станций управления с частотным преобразователем
- •4.4.1. Общие сведения
- •4.4.2. Область применения су c чп
- •4.4.3. Подбор скважин для внедрения су с чп
- •4.4.4. Организация производства работ
- •4.4.5. Вывод на режим
- •4.4.6. Техническое обслуживание
- •5. Система ппд, строительство
- •5.1. Система поддержания пластового давления
- •Конструкции водозаборных скважин
- •Технические характеристики
- •5.2. Строительство и эксплуатация
- •5.2.1. Назначение и классификация трубопроводов
- •5.2.2. Проектирование трубопроводов, контроль качества строительства, технический надзор
- •5.3. Эксплуатация трубопроводов
- •5.4. Техническое обслуживание и ремонт трубопроводов
- •Периодичность ревизии трубопроводов
- •5.5.Защита трубопроводов от коррозии
- •Паспорт трубопровода
- •Данные о монтаже
- •Б. Фланцы и крепежные детали
- •Результаты испытания
- •Заключение
- •Результаты измерений и прогноза
- •Регистрация трубопровода
- •Акт испытания трубопроводов на прочность и плотность
- •Технического расследования некатегорийного отказа трубопровода
- •Инструкция по ведению и хранению паспортов на нефтепромысловые трубопроводы
- •6. Оборудование скважин уэцн
- •6.1. Погружные установки для добычи нефти
- •6.1.1. Краткие сведения по добыче нефти установками электроприводного погружного центробежного насоса
- •6.1.2. Комплектность уэцн
- •6.1.3. Конструктивные особенности уэцн
- •6.1.4. Электродвигатели погружные асинхронные типа пэд
- •Основные характеристики
- •6.1.5. Погружной кабель для уэцн
- •6.1.6. Применение газосепараторов и диспергаторов в составе уэцн
- •Технические данные диспергаторов
- •6.1.7. Коструктивные особенности уэцн импортного производства
- •Параметры насосов фирмы odi
- •6.2. Наземное электрооборудование уэцн
- •6.2.1. Станции управления уэцн
- •6.2.2. Трансформаторы серии тмпн
- •6.3. Монтаж и эксплуатация уэцн
- •6.3.1. Монтаж уэцн на скважине
- •6.3.2. Спуск уэцн в скважину
- •6.3.3. Запуск и вывод уэцн на режим
- •6.3.4. Демонтаж уэцн (по видам гидрозащит)
- •6.3.5. Монтаж уэцн импортного производства
- •6.4. Оборудование для добычи сеноманской и артезианской воды
- •Технические характеристики агрегатов центробежных скважинных типа эцв для скважин ппд
- •Комплектация и технические характеристики установок электроцентробежных насосов
- •7. Фонтанная эксплуатация скважин
- •7.1. Теоретические основы фонтанирования скважин
- •7.2. Оборудование для эксплуатации фонтанирующих скважин
- •7.3. Исследование фонтанных скважин. Регулирование работы
- •7.4. Осложнения в работе фонтанных скважин и их предупреждение
- •8. Эксплуатация осложненного фонда добывающих скважин
- •8.1. Асфальтосмолопарафиновые отложения (аспо)
- •8.1.1. Причины и условия асфальтосмолопарафиновых отложений
- •8.1.2. Методы борьбы с аспо
- •90° Направление ветра скважина а ц№2
- •8.2. Солеотложения
- •8.2.1. Причины возникновения солеотложений
- •8.2.2. Борьба с солеотложениями
- •8.3. Коррозия
- •8.3.1. Причины возникновения коррозии
- •8.3.2. Способы защиты от коррозии
- •8.4. Образование гидратных отложений
- •8.4.1. Механизм образования гидратных отложений
- •8.4.2. Методы предупреждения гидратообразований и борьба с гидратоотложениями
- •8.5. Прочие осложнения
- •8.5.1. Влияние свободного газа на работу насосов шгн
- •8.5.2. Осложнения при образовании песчаных пробок
- •8.5.3. Особенности откачки высоковязких сортов нефти и водонефтяных эмульсий
- •8.5.4. Осложнения при эксплуатации наклонно-направленных скважин установками шгн с интенсивностью набора кривизны более 2о на 10 м
- •8.5.5. Обводнение скважин с темпом выше проектного
- •9. Исследование скважин
- •9.1. Промыслово-гидродинамические исследования
- •Исследований
- •9.2. Промыслово-геофизические исследования
- •10. Текущий и капитальный ремонт скважин
- •10.1. Подготовка скважины к ремонту
- •10.2. Производство работ по глушению
- •10.2.1. Основные положения
- •10.2.2. Подготовка скважины к глушению
- •10.2.3. Технология глушения скважин
- •10.2.4. Глушение фонтанных, газовых и нагнетательных скважин
- •10.2.5. Глушение скважин, оборудованных шгн
- •10.2.6. Глушение скважин, оборудованных уэцн
- •10.2.7. Инструкция по расчету циклического глушения механизированных скважин Исходные данные
- •10.2.8. Осложненное глушение
- •10.3. Текущий ремонт скважин
- •10.3.1 Классификатор текущих ремонтов скважин
- •10.4. Капитальный ремонт скважин
- •10.4.1. Классификатор капитальных ремонтов скважин
- •10.4.2. Классификатор капитальных ремонтов скважин, выполняемых бригадами Сургутского упнПиКрс с использованием установок «Непрерывная труба»
- •10.5. Основные операции, проводимые
- •10.5.1. Спуск-подъем гно
- •10.5.2. Шаблонирование ствола скважины
- •Диаметры шаблона
- •10.5.3. Внедрение отсекателей пласта
- •10.5.4. Геофизические исследования скважин
- •10.5.5. Промывка забоя скважины
- •10.5.6. Обработки призабойной зоны продуктивного пласта (опз)
- •10.5.7. Гидравлический разрыв пластов
- •10.5.8. Забуривание боковых стволов
- •10.5.9. Забуривание боковых стволов на депрессии
- •10.5.10. Ремонтно-изоляционные работы
- •10.5.11. Ловильные работы, ликвидация аварий
- •10.6. Перечень работ в текущем и капитальном ремонте скважин, при выполнении которых обязательно присутствие мастера или ответственного инженерно-технического работника (итр)
- •Перечень работ в текущем и капитальном ремонте скважин
- •10.7. Основные виды оборудования и инструмента, применяемые при текущем и капитальном ремонте скважин
- •10.7.1. Подъемные агрегаты
- •10.7.2. Оборудование и инструмент, применяемые при спуско-подъемных операциях
- •Технические характеристики элеваторов эш
- •10.7.3. Ловильный инструмент
- •10.7.4. Пакерно-якорное оборудование
- •10.8. Предупреждение и ликвидация газонефтеводопроявлений при ремонте скважин
- •Содержание
- •1. Геология и бурение нефтяных месторождений
- •2. Разработка месторождений 29
- •3. Методы повышения нефтеотдачи пластов
7. Фонтанная эксплуатация скважин
7.1. Теоретические основы фонтанирования скважин
Фонтанная добыча нефти является наиболее эффективным способом, особенно на вновь вводимых в эксплуатацию месторождениях. Фонтанный способ добычи не требует затрат энергии на подъем жидкости из скважины и на транспортировку добытой продукции до мест подготовки товарной нефти и газа. Способ наиболее дешевый и экономичный.
Этот способ имеет ряд и других преимуществ по сравнению с известными способами добычи:
– относительная простота оборудования скважин;
– отсутствие необходимости в подаче электроэнергии в скважину с поверхности;
– возможность регулирования режима работы скважины в широких диапазонах;
– значительная продолжительность межремонтного периода работы (МРП) скважины;
– удобство выполнения исследования скважин и пласта с применением всех современных методов.
Р
Н
Н
Однако недостатком способа является то, что при достижении определенной степени снижения пластового давления, уменьшения количества газа, поступающего из пласта, увеличения обводненности продукции скважины пластовая энергия уже не может обеспечивать фонтанирование скважины на необходимых режимах. Фонтанирование прекращается.
Существует два вида фонтанирования скважин.
Р
Фонтанирование жидкости, не содержащей растворенного газа, – артезианское фонтанирование за счет гидростатического напора пласта – встречается крайне редко.
р.
Рис. 1
Фонтанирование за счет энергии растворенного газа, выделяющегося из жидкости, – более распространенный способ. В обоих случаях фонтанирование может происходить при условии, если пластовое давление (РПЛ) превышает давление на забой (РЗАБ). При установившемся движении жидкости при фонтанировании забойное давление уравновешивается
суммой давлений: давлением столба жидкости в скважине (Н ■ р ■ gf), давлением, необходимым для преодоления сил трения при движении жидкости в скважине по подъемным трубам (Ртр), буферным давлением (Ру). Последнее служит для преодоления сил трения добываемой жидкости в нефтесборных трубопроводах для прокачки ее до сепараторов ДНС и создания рабочего давления в последних (рис. 1).
Исходя из этого минимальное забойное давление РЗДБ, которое необходимо для фонтанной эксплуатации скважины, может быть определено по формуле:
P±-iH'P'Q)+Pw+Pr, (1)
где: Н - высота столба жидкости в скважине, м;
р - средняя по высоте скважины плотность жидкости, кг/м3;
g - ускорение свободного падения, м/с2;
Ртр - потери забойного давления на преодоление трения жидкости о стенки подъемных насосно-компрессорных труб (НКТ) в скважине, МПа;
Ру - давление на устье скважины (буферное давление), МПа.
Приток жидкости из пласта в скважину характеризуется следующим эмпирическим уравнением:
где: Q - дебит жидкости, т/сут;
К - коэффициент продуктивности пласта (т / 0,1 МПа), показывающий, сколько тонн нефти в сутки может быть получено из пласта при снижении противодавления на пласт на 0,1 МПа;
Рпл- статическое давление в пласте в зоне скважины, МПа;
п – показатель характера фильтрации горных пород, слагающих продуктивный пласт.
Разность РПЛ - РЗАБ в специальной литературе принято называть депрессией. В зависимости от ожидаемых давлений, а также во избежание открытого фонтанирования ствол фонтанных скважин до перфорации должен быть заполнен жидкостью такой плотности (глинистый раствор, солевой раствор и др.), которая обеспечивала бы противодавление на забой и предотвращала выброс. Из уравнения (1) следует, что для возбуждения фонтана, то есть для выхода жидкости на поверхность, необходимо создать условия, чтобы давление в скважине на забой (РЗАБ) было меньше, чем пластовое (Рпл). Достигается это путем замещения глинистого раствора в стволе скважины солевым раствором, а затем - солевого раствора товарной нефтью.
Дебиты фонтанных скважин могут изменяться в широких пределах: некоторые скважины дают 500 т/сут и более, но известны скважины, фонтанирующие с дебитом 5 т/сут.
Выбор диаметра газожидкостного подъемника производится с учетом обеспечения условия фонтанирования скважин. При этом на начальном этапе работы скважин при низкой обводненности продукции возможно создать условия, при которых использование пластовой энергии на подъем
жидкости будет минимальным. В дальнейшем по мере роста обводненности продукции и снижения пластового давления необходимо обеспечить рациональное использование пластовой энергии.
Оптимальный режим qОПТ при наивысшем КПД:
Максимальный режим qMAХ – максимальная производительность:
где: L – глубина скважины, м;
ρ – средняя по высоте скважины плотность жидкости, кг/м3;
g – ускорение свободного падения, м/с2;
РБ – давление у башмака НКТ, Па;
РУ – давление на устье скважины, Па.
Если qMAX > qОПТ, то в скважину спускают НКТ диаметром dНКТ, который удовлетворяет конечным и начальным условиям фонтанирования.
Если qMAX < qОПТ, то производят пересчет диаметра фонтанного подъемника на начальные условия.
Данное уравнение можно решить как аналитическим, так и графическим способом (рис. 2).
Рис. 2
Для правильного согласования работы фонтанного подъемника с работой пласта необходимо, чтобы приток жидкости из пласта в скважину равнялся пропускной способности подъемника при одном и том же РБ и РЗАБ. Для устойчивой работы подъемника с высоким КПД планируемый дебит скважины должен находиться в диапазоне qMAX – qОПТ.
Регулирование дебита жидкости фонтанирующей скважины выполняют с помощью специальных дросселей – штуцеров.
Приравняв Q = qMAX, получим:
Фонтанная эксплуатация скважин
233
С учетом потерь давления в штуцере формула (1) принимает вид: ав, = (Нрд) + Вр+Я + Ршт,
где Ршт- потери пластового давления в штуцере, МПа.
Очевидно, что фонтанирование скважины возможно только при соблюдении условия:
При высоком газовом факторе диаметр штуцера определяют по формуле:
d = Q.27b
'Р ioJ ■
где: d – диаметр штуцера, мм;
Qг – объем газа, м3/сут;
ρг – плотность газа, кг/м3;
ϕ – коэффициент, зависящий от величины газового фактора (при чистом газе ϕ = 1; наибольшее значение ϕ составляет 1,2);
РУ – давление на устье, МПа.
Пример подбора диаметра штуцера представлен на рисунке 3.
Рис. 3
