- •2. Скорость и ускорение при криволинейном движении.
- •4) Законы Ньютона. Масса. Сила
- •7. Закон сохранения импульса
- •8. Центр масс (центр инерции) механической системы и закон его движения.
- •9. Момент импульса и момент силы
- •11. Уравнение динамики вращательного движения твердого тела относительно неподвижной оси.
- •12) Кинетическая и потенциальная энергия. Закон сохранения энергии.
- •13) Упругая деформация. Закон Гука.
- •14 ) Закон сохранения момента импульса.
- •15) Линии тока. Трубка тока. Стационарное течение идеальной жидкости. Уравнение неразрывности.
- •16) Уравнение Бернулли.
- •17. Механические гармонические колебания. Общие характеристики гармонических колебаний. Дифференциальное уравнение механических гармонических колебаний.
- •21. Поперечные и продольные волны. Уравнение бегущей волны.
- •22.Термодинамические системы и их параметры: давление, температура, объем.
- •23 Уравнение Клапейрона — Менделеева
- •24. Основное уравнение молекулярно-кинетической теории идеальных газов
- •25. Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплового движения
- •26.Барометрическая формула и её физический смысл. Распределение концентрации молекул воздуха по высоте над уровнем моря.
- •27.Явления переноса в термодинамических системах: вязкость (закон Ньютона).
- •28.Явления переноса в термодинамически неравновесных системах. Диффузия (Закон Фика).
- •29.Явления переноса в термодинамически неравновесных системах. Теплопроводность (Закон Фурье).
- •30.Теплоёмкости газов. Молярные теплоёмкости при постоянном объёме и при постоянном давлении. Уравнение Майера.
- •31. Первое начало термодинамики. Внутренняя энергия системы. Работа и теплота.
- •32. Изопроцессы. Изохорный, изобарный, изотермический.
- •33. Изопроцессы. Адиабатический, политропный.
- •34. Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые машины и их кпд
- •35. Второе начало термодинамики. Энтропия и ее свойства.
- •36. Реальные газы. Уравнение Ван-дер-Ваальса
- •37. Элементарный электрический заряд. Закон сохранения электрического заряда.
- •38. Закон Кулона. Эл. Постоянная. Диэлектрич. Прониц-ть среды.
- •39. Электростатическое поле. Напряженность электростатического поля. Принцип суперпозиции электростатических полей.
- •40. Потоком вектора напряженности эл поля. Теорема Гаусса
- •41. Работа, совершаемая при перемещ. Заряда в эл-стат. Поле
- •42. Циркуляция вектора напряженности эл.Стат. Поля вдоль замкнутого контура.
- •44.Проводники в эл.Стат. Поле. Эл.Емкость. Конденсаторы.
- •46. Параллельное соединение конденсаторов
- •47. Обобщенный закон Ома
- •48. Правила Кирхгофа
- •49. Работа и мощность тока. Закон Джоуля — Ленца в дифф-ой и интегральной формах
- •50. Магнитное поле и его характеристики
- •53. Закон б—с—л и его применение к расчету м. П. Прямого тока
- •54. Закон Ампера. Взаимодействие параллельных токов
- •55. Работа по перемещению проводника с током в магнитном поле
- •56. Сила Лоренца. Движ-е зар. Частиц в м. П.
- •Движение заряженных частиц в м.П.
- •57. Циркуляция вектора в магнитного поля в вакууме
- •58. Магнитный поток. Теорема Гаусса для магнитного поля
- •59. Явление электромагнитной индукции. Закон Фарадея. Правило Ленца.
- •60. Явления самоиндукции и взаимной индукции
- •61. Энергия магнитного поля. Плотность энергии магнитного поля.
- •62. Волновое уравнение для электромагнитного поля.
- •63. Интерференция световых волн. Связь между разностью фаз и оптической разностью хода. Условия интерференционных максимумов и минимумов.
- •64. Интерференция света в тонких пленках.
- •65. Полосы равной толщины. Кольца Ньютона.
- •66. Дифракция световых волн. Принцип Гюйгенса-Френеля.
- •67. Метод зон Френеля. Дифракция Френеля на круглом отверстии.
- •68. Дифракция Фраунгофера на одной щели.
- •69. Дифракция Фраунгофера на дифракционной решетке.
- •70. Дифракция Фраунгофера на одной щели.
- •71. Дифракция Фраунгофера на дифракционной решетке.
- •72.Взаимодействие света с веществом. Дисперсия света. Поглощение света.
- •73. Поляризация света. Степень поляризации. Закон Малюса.
- •74. Поляризация света при отражении и преломлении. Закон Брюстера.
- •75. Тепловое излучение. Лучеиспускательная и поглощательная способности тела. Закон Кирхгофа.
- •76.Закон Стефана - Больцмана. Закон смещения Вина.
- •77. Квантовая гипотеза и формула Планка.
- •77.Квантовая гипотеза и формула Планка.
- •78.Фотоны. Энергия и импульс световых квантов.
- •79.Законы внешнего фотоэффекта. Уравнение Эйнштейна.
- •80.Эффект Комптона.
- •81.Постулаты Бора. Линейчатые спектры излучения атома водорода.
- •82.Волновые свойства микрочастиц. Волны де-Бройля.
- •83.Волновая функция и её статистический смысл.
- •Скорость и ускорение при криволинейном движении.
65. Полосы равной толщины. Кольца Ньютона.
Полосы равной толщины:Допустим, что толщина пластинки не постоянной (∼b, n = const). Тогда во всех тех местах пластинки, где толщина b, а следовательно, и разность хода Δ одинаковы, наблюдается один и тот же результат интерференции. Это означает, что вдоль какой-либо темной или светлой интерференционной полосы, образующейся на поверхности, толщина этой пластинки одна и та же.Полосы равной толщины локализованы на поверхности пластинки. При наблюдении в белом свете полосы будут окрашены так, что поверхность содержит все цвета радуги. Пример полос равной толщины: нефтяные пятна, мыльные пленки и т.д. Кольца Ньютона - пример полос равной, толщины. Они наблюдаются при отражении света.от соприкасающихся друг с другом плоско параллельной толстой стеклянной пластинки и плоско выпуклой линзы с большим радиусом кривизны. Роль тонкой пленки переменной толщины b, от поверхности которой отражаются когерентные волны, играет зазор между пластинкой и линзой.
66. Дифракция световых волн. Принцип Гюйгенса-Френеля.
Принцип Гюйгенса-Френеля позволил объяснить прямолинейность распространения волн и их дифракцию, т.е. огибание препятствий. Дифракция света - отклонение от прямолинейного распространения (от законов геометрической оптики) при всяком ограничении волнового фронта, в частности, при прохождении через малые отверстия и при встрече с малыми препятствиями. Френель предложил -каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени. Принцип Гюйгенса-Френеля: каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.
67. Метод зон Френеля. Дифракция Френеля на круглом отверстии.
Зоны Френеля - участки, на которые можно разбить поверхность световой волны для вычисления результатов дифракции света. Пусть от светящейся точки распространяется сферическая волна и требуется определить характеристики волнового процесса, вызванного ею в точке Р. Разделим поверхность волны S на кольцевые зоны. Для этого проведём из точки сферы радиусами PO, ( O — точка пересечения поверхности волны с линией PQ ). Кольцеобразные участки поверхности волны, «вырезаемые» из неё этими сферами, и называется зонами Френеля. Волновой процесс в точке P можно рассматривать как результат сложения колебаний, вызываемых в этой точке каждой зоной Френеля в отдельности. Сферическая волна, распространяющаяся из точечного источникa, встречает на своем пути экран с круглым отверстием. Дифракционная картина наблюдается на экране. Разобьем часть волновой поверхности на зоны Френеля. Вид дифракционной картины будет зависеть от количества зон Френеля, укладывающихся в отверстии. Амплитуда результирующего колебания в точке равна: А=А1/2±Аm/2 (плюс для нечетных m, минус – для четных). Дифракционная картина от круглого отверстия вблизи точки будет иметь вид чередующихся светлых и темных колец.
