- •Введение. Роль курса электроники и микросхемотехники. История развития.
- •История развития электроники.
- •§1 Физические свойства полупроводников. Носители заряда в примесных полупроводниках.
- •§2 Свойства электронно-дырочного p-n перехода.
- •2.1 Свойства p-n перехода при отсутствии внешнего электрического поля.
- •2.2 Прямое включение p-n перехода
- •2.3 Обратное включение p-n перехода.
- •2.4 Вольт-амперная характеристика p-n перехода
- •2.5 Полная вольт-амперная характеристика p-n перехода
- •§3 Полупроводниковые диоды
- •3.1 Вольт-амперная характеристика диода
- •3.3 Основные типы полупроводниковых диодов
- •1). Выпрямительные диоды
- •3.4 Выпрямительные диоды делятся по мощности:
- •3.5 Парметры выпрямительных диодов
- •3.6 Предельный режим
- •3.7 Универсальные диоды
- •§4 Стабилитроны
- •4.1 Основные параметры стабилитрона
- •4.2 Параметрический стабилизатор напряжения
- •§5 Стабисторы
- •§6 Импульсные диоды
- •6.1 Импульсные диоды обязательно характеризуются такими параметрами:
- •6.2 Варикапы
- •6.3 Излучающие полупроводниковые диоды.
- •Принцип действия:
- •6.4 Область излучения
- •6.5 Основные параметры светодиодов
- •§7 Фотодиоды
- •7.1 Фотодиодный режим
- •Вах фотодиодов:
- •Принцип действия фотодиодов
- •7.3 Фотогенераторный режим
- •Принцип дейсвия:
- •7.4 Оптроны
- •§8 Биполярные транзисторы
- •8.1 Принцип действия биполярных транзисторов
- •8.2 Основные схемы включения биполярных транзисторов.
- •8 .2.1 Схема включения с общей базой
- •8.2.2 Схема включения с общим эммитером
- •8.2.3 Схема включения с общим коллектором.
- •8.3 Статические вольт-амперные характеристики биполярных транзисторов.
- •8.3.1 Вольт-амперные характеристики для схемы с общей базой:
- •8.4 Выходные вольт-амперные характеристики
- •8.4.1 Вольт-амперные характеристики для схемы с общем эммитером.
- •8.4.2.Выходные вольт-амперные характеристики для схемы с общим эммитером
- •8.5 Основные параметры транзисторов:
- •Предельный (максимальный) режим.
- •Обозначение транзисторов.
- •§9 Полевые транзисторы.
- •Они бывают двух типов:
- •9.1 Транзисторы с управляющим p-n переходом.
- •9.2 Структура такого транзистора.
- •Принцип действия.
- •9.3 Вольт-амперные характеристики транзистора.
- •9.7 Стоковые (выходные) характеристики полевого транзистора со встроенным каналом n-типа.
- •9.7.1 Стоко- затворная характеристика со встроенным каналом n-типа
- •9.8 Полевые транзисторы с индуцированным каналом.
- •§10 Усилители .
- •3. Усилители высоких частот.(увч).
- •4.Широкополосные усилители захватывает диапазон унч иУвч.
- •5. Узкополосные (резонансные) усилители.
- •10.1 Основные характеристики усилителя:
- •10.1.1 Амплитудная характеристика
- •Причины возникновения помех на выходе усилителя.
- •10.1.2 Амплитудо-частотная и фазо - частотная характеристики усилителя .
- •Рассмотрим простейший усилительный каскад:
- •10.2 Искажения в усилителях.
- •10.2.1 Частотные искажения:
- •10.2.2 Нелинейные искажения
- •10.3 Усилительный каскад с общим эммитером. Питание цепей транзистора.
- •Эмиттерная стабилизация усилительного каскада.
- •Полная схема усилительного каскада с общим эммитером.
- •Назначение элементов
- •Принцип работы схемы
- •10.4 Усилители мощности. Линия нагрузки усилительного каскада по постоянному току.
- •10.5 Режим работы усилительных каскадов. Классы усиления
- •Свойства данного режима
- •10.6 Каскады усиления мощности.
- •Усилитель мощности класса а с трансформаторным подключением.
- •Усилительный каскад класса ав.
- •10.7 Источники вторичного электропитания. Маломощные выпрямители однофазного тока.
- •10.8 Стабилизатор напряжения.
- •10.9 Диодные схемы выпрямления
- •Однополупериодная.
- •2. Двухполупериодная схемы выпрямления с выводом средней точки трансформатора
- •3. Мостовая схема выпрямления
- •10.10 Сглаживающие фильтры
- •1. Ёмкостной фильтр
- •Индуктивный фильтр
- •Электронные фильтры
- •10.11 Внешние (нагрузочные) характеристики выпрямителя
- •Стабилизаторы напряжения
- •Структурная схема последовательного компенсационного стабилизатора напряжения
- •Принципиальная схема
- •Обратные связи в усилителях
- •10.12 Влияние обратной связи на свойства усилителя
- •Влияние обратной связи на стабильность коэффициента усиления.
- •Отрицательные обратные связи уменьшают искажение и помехи усилителя в ( ) раз.
- •§11 Операционные усилители
- •11.1 Основные параметры операционных усилителей
- •11.2 Основные схемы включения(оу)
- •Дифференцирующие усилители на основе оу
- •Рассмотрим временную характеристику дифференциального усилителя
- •11.3 Активные фильтры на основе оу
- •Активный фильтр низких частот второго порядка на основе оу
- •11.4 Генераторы синусоидальных колебаний (гск)
- •Гск на основе оу с трехзвенным четырехполюсником Рассмотрим четырехполюсник
- •Параметры импульсного сигнала.
- •Параметры одиночного импульса
- •11.5 Ключевой режим работы транзистора
- •11.6 Рассмотрим электронный ключ на основе биполярного транзистора
- •§12 Цифровая техника
- •12.1 Основные виды логических операций
- •12.2 Логические элементы
- •5)Логический элемент и-не
- •12.3 Параметры цифровых интегральных схем
- •2)Потребляемая мощность
- •12.4 Основные типы цифровых интегральных схем
- •Р ассмотрим элемент ттл и-не.
- •2)Микросхемы на моп – структурах
- •12.5 Сравниваем параметры логических элементов различных типов
10.6 Каскады усиления мощности.
Обычно являются выходными каскадами к которым подключаются нагрузка и предназначены для получения в нагрузке требуемой мощности. Могут быть однотактными и двухтактными, трансформаторными и бестрансформаторными. Могут включаться по разным схемам. Они могут быть достаточно разными. Вид выходного каскада определяется режимом работы.
Усилитель мощности класса а с трансформаторным подключением.
Рисунок 10.16
Достоинства:
1. Трансформатор обеспечивает согласование выходного сопротивления каскада и сопротивления нагрузки для получения максимальной мощности в нагрузке.
2. Позволяет легко получить заданные выходные напряжение, ток и мощность нагрузки.
Недостаток: наличие дорогостоящего и громоздкого трансформатора.
Двухтактные выходные усилительные каскады. Усилительный каскад класса В.
Рисунок 10.17
- в режиме класса В. VT1-n-p-n,
VT2- p-n-p.
Схема с общим коллектором, усиливает
мощность и ток. Схема работает в режиме
класса В так как напряжение
.
Схема обеспечивает двухтактный режим
работы. В первом такте положительная
полуволна приходит и на базу транзистора
VT1 и на базу транзистора
VT2. Транзистор VT1-n-p-n
отпирается положительной
полуволной и пропускает ее в нагрузку
усиливая по току, транзистор VT2-
p-n-p
положительной полуволной запирается.
Второй такт – отрицательная полуволна
приходит и на базу VT1
и VT2
при этом транзистор VT2
отпирается и пропускает отрицательную
полуволну в нагрузку усиливая ее по
току. Транзисторы VT1
и VT2
в таких усилительных каскадах должны
быть комплементарной парой (то есть
транзисторы одинаковы по параметрам,
но разной проводимости).
КТ815- n-p-n КТ817- n-p-n
КТ814- p-n-p КТ816 - p-n-p
-
коэффициент передачи по току должен
быть одинаков у двух транзисторов.
Недостаток – большие нелинейные искажения. По этому как правило в таких схемах используется режим класса АВ.
Рисунок 10.18
Усилительный каскад класса ав.
Режим класса АВ обеспечивается делителем
.
При этом на базу транзистора подается
такое напряжение смещения, при котором
рабочая точка попадает на начало
линейного участка входной вольт –
амперной характеристики. На диоде
подаем необходимое напряжение смещения,
кроме того
обеспечивает термокомпенсацию схемы.
Усилительный каскад класса АВ на составных транзисторах.
Е
сли
требуемый коэффициент усиления по току
не обеспечивается одним транзистором
в плече усилительного каскада, то
усилительный каскад строится на составных
транзисторах. Рассмотрим такой
усилительный каскад.
Рисунок 10.19
составной транзистор, отпирается
положительной полуволной.
отпирается отрицательной полуволной.
Напряжение смещения на базах транзисторов
обеспечивается делителем напряжения
.
С увеличением выходной мощности
возрастают трудности при выборе
комплементарных транзисторов на выходе
схемы. Поэтому схема строится так, что
в качестве транзисторов VT3
и VT4 используются транзисторы
одинаковой проводимости, а транзисторы
VT1, VT2 - разной
проводимости.
