- •Учебное пособие по курсу Геотектоника, геодинамика и металлогения
- •Введение
- •Часть 1
- •1.1 Геотектоника – наука о строении и эволюции земной коры и Земли.
- •1.2 Методы тектонических исследований
- •1.3 Краткие сведения об истории геотектоники
- •2 Характеристика оболочек Земли
- •2.1 Характеристика строения земной коры, нижней и верхней мантии; понятие о литосфере и астеносфере, тектоносфере.
- •2.2 Типы земной коры и соответствующие им структурные формы.
- •2.3 Океанские и материковые мегаструктуры.
- •3. Структурные элементы материковой коры (древние платформы, складчатые геосинклинальные пояса)
- •3.1 Типы структур ранне-докембрийской коры (архейские и раннепротерозойские структуры)
- •Внутреннее строение фундамента древних платформ
- •Структурные элементы осадочного чехла и поверхности фундамента
- •Стадии развития платформ
- •4.1. Геосинклинали и эпигеосинклинальные орогены.
- •4.2. Определение геосинклинальных поясов, условия их заложения и основные типы.
- •Часть 2
- •5. Неотектоника
- •5.1 Типы областей континентальной коллизии
- •5.2 Гималайский тип
- •5.3 Новейшая активность
- •5.3.1 Определение понятий
- •5.3.2. Современная и новейшая активность
- •5.3.3. Типы проявлений новейшей активности
- •5.3.4. Вертикальные движения поверхности Земли
- •5.3.5. Горизонтальные движения
- •5.3.6. Сейсмичность
- •5.3.7. Вулканизм
- •5.3.8. Тепловой поток
- •5.3.9. Современные и новейшие деформации
- •5.3.10. Выводы
- •Часть 3
- •6. Основные источники энергии и глубинные механизмы тектонических процессов
- •6.1 Источники энергии глубинных геологических процессов
- •6.2 Реологические свойства коры и мантии, литосферы и астеносферы
- •6.3 Конвекция в мантии Земли
- •6.4 Современные представления о механизме тектонических движений и деформаций литосферы
- •6.5 Ротационный и космический факторы в геодинамике
- •Часть 4 Металлогения Происхождение полезных ископаемых
- •7.1. Тектоника плит и происхождение эндогенных полезных ископаемых
- •7.2 Выделение земного ядра − главный процесс, определяющий эволюцию геологических обстановок на Земле
- •7.3. Влияние океана и климатов Земли на формирование осадочных полезных ископаемых раннего протерозоя
- •7.4. Происхождение алмазоносных кимберлитов и родственных им пород
- •7.5. Происхождение экзогенных полезных ископаемых
- •7.6. Тектоника литосферных плит и нефтегазоносность Земли
- •Список рекомендуемой литературы Основная литература
- •Дополнительная литература
Часть 2
5. Неотектоника
Новейшая структура активных континентальных окраин
(по Тевелёву А.В.)
Содержание: Горообразование эволюция идей. Новейшая активность. Модели и механизмы образования новейших структур. Континентальные внутриплитные неоструктуры. Новейшая структура активных континентальных окраин. Внутриконтинентальные рифты
Под активными континентальными окраинами понимаются те области континентальных сегментов литосферных плит, в которых реально проявляются эффекты взаимного сближения, столкновения (т.е. коллизии) плит. С континентальним сегментом одной из плит могут взаимодействовать разные составные части второй коллодируюшей плиты - ее также континентальная область, океаническая котловина, островная дуга и даже срединно-океанический хребет. В результате образуются совершенно разные комплексы неоструктур. На рис. 6.1. (таб). показаны эти типы взаимодействия. В этой лекции мы остановимся на континентальной коллизии: процессе сталкивания плит континентальными сегментами и на новейших структурах, формирующихся в этом процессе.
5.1 Типы областей континентальной коллизии
Рис. 24. Схема коллизии континентальных блоков литосферы (а) и обдукции плит (б)
Для всех коллизионных областей характерны некоторые общие характеристики. Практически всегда - это сложно-расчлененные горные страны, с высокоамплитудными вертикальными и горизонтальными движениями, интенсивной рассеянной сейсмичностью и с интенсивными тектоническими деформациями. Структура коллизионных областей очень неоднородна, практически всегда они представляют собой конгломерат разномасштабных блоков, сложным образом взимодействующих между собой и в каждом из которых, тем не менее, прослеживается собственная тенденция развития. Развитие каждого из блоков контролируется как собственными корово-мантийными особенностями, так и кинематикой коллодирующих плит. Важно отдавать себе отчет, что отдельные блоки коллизионных систем первоначально могли принадлежать совершенно различным и пространственно далеко разнесенным тектоническим единицам. В современной терминологии такие блоки называются "террейнами", то-есть попросту, по-русски, территориями
В глобальном масштабе области коллизии являются зонами сжатия. Только в редких случаях плиты сталкиваются что называется лоб в лоб, а обычно векторы мгновенных скоростей плит в зоне столкновения не совпадают. По расчетам Н. Вудкока, обстановки чистого сжатия на конвергентных границах плит развиты не более чем на 15% их длины, а в основном здесь наблюдаются комбинированные обстановки сжатия и сдвигания, которые сейчас принято называть транспрессивными. На конвергентных границах таких косо сближающихся плит, помимо обстановок сжатия проявляются еще и сдвиговые обстановки, а внутри сдвиговых зон могут образоваться неоструктуры самого различного динамического содержания, в том числе неоструктуры растяжения.
В целом, на конвергентных, в том числе и коллизионых, плитных границах происходит поглощение литосферы, компенсирующее ее наращивание в дивергентных зонах, например в рифтовых системах.
Как происходит этот процесс в случае коллизии? Понятно, что в приповерхностных горизонтах сокращение площади коры может происходить за счет образования структур сжатия - складок различного масштаба, надвигов и взбросов, вертикального коробления коры в рамповых структурах и пр. Расчеты, однако, показывают, что практически нигде приповерхностные структуры сжатия не компенсируют всей величины схождения литосферных плит, предполагаемой по палеомагнитным данным. Поведение глубинных масс во многих участках областей коллизии остается проблемой, и особенно это касается регионов, где отсутствует глубинная сейсмичность и поэтому не очень ясны механизмы глубинного деформирования. Однако в других районах глубинная сейсмичность проявлена, и мы имеем вполне достоверные сведения о способах глубинной компенсации материала, доставляемого плитами в коллизионную область.
Рис. 25. Схема региональной геодинамики Восточного Средиземноморья и прилегающих областей (McClusky S. etal, 2000 с изменениями). Цветом показан рельеф, сплошные линии показывают положение основных разломов, стрелки указывают направление и скорость движения основных плит.
Наиболее развитой областью континентальной коллизии является Альпийско-Гималайский горно-складчатый пояс, представляющий собой грандиозную систему горно-складчатых сооружений и бассейнов, которая протягивается от Гибралтара до Юго-Восточной Азии и маркирует широкую и сильно дифференцированную зону столкновения Евразии с Африканской, Аравийской и Индо-Австралийской плитами. Границы коллизионной области не вполне определенны, просто из-за того, что в ее состав входят тектонические единицы разного содержания и разной морфологической выраженности. В первую очередь к ней относятся структуры, испытавшие складчатость в позднеальпийское время в связи с внешним давлением коллодирующих плит - Альпы, Аппенины, Динариды, Эллениды, Карпаты, Крым и Кавказ, Загрос, Тавр, Эльбурс, Копетдаг, молодые сооружения Афганистана и Пакистана, Памир, Бадахшан, Гиндукуш, собственно Гималаи и некоторые другие. Сюда же относятся молодые (альпийские) межгорные впадины и передовые прогибы, как с деформированным, так и с недеформированным осадочным чехлом, расположенные между горными сооружениями.
Очевидно, что в эту же область входят так называемые области новейшей активизации, в пределах которых в горообразование вовлечены преимущественно до альпийские комплексы, и в которых проявления новейшей активности имеют тот же порядок, что и в альпийских сооружениях: Кунь-Лунь, Каракорум, Центрально-Афганский массив, Тянь-Шань, Алтай, палеозойские и более древние комплексы Турции, Юго- Западной и Центральной Европы и некоторые другие. От типичных альпид они отличаются отсутствием мощных морских или океанических образований альпийского цикла. В то же время, мезозойско-кайнозойские платформенные осадки этих районов в той или иной степени деформированы, и в некоторых местах развит вулканизм разного масштаба. Остается неясным, в какой степени Евразиатско-Индийской коллизией определяется строение и развитие еще более северных территорий: Западного и Восточного Саяна, Кузнецкого Алатау, горных сооружений южной окраины Сибирской платформы, Байкальской области и Забайкалья, Северо-Китайских структур. Синхронность их развития с типично коллизионными сооружениями и их пространственные связи не исключают такой возможности. В то же время, существуют предположения, что активность всей этой области определяется взаимодействиями в мозаике микроплит, движения которых в значительной степени контролируются геодинамикой уже Тихоокеанского региона.
Практически непрерывные коллизионные пояса отчетливо сегментированы. Эта сегментация имеет системный характер, она лишь частично определяется "террейновой" структурой областей коллизии, и связана скорее с общими, коллективными характеристиками зоны коллизионного взаимодействия - геометрическими, реологическими и скоростными.
Главные из них - это несомненно:
(1) интенсивность, "продвинутость" конвергенции,
(2) взаимная ориентировка векторов схождения коллодирующих плит
(3) предколлизионная история регионов.
Общепринятой классификации коллизионных областей не существует: здесь предлагается классификация, основанная на геодинамических, морфологических и структурных характеристиках.
Гималайский тип Обстановка континентальной (А) субдукции |
Среднеазиатский тип Обстановка транспрессии |
Cредиземноморский тип Смешанные обстановки |
Восточно-Азиатский тип Смешанные обстановки |
Передовые прогибы Низкие предгорья Высокие предгорья "Кристаллические" хребты Высокогорные плато Поперечные рифты Присдвиговые впадины Тыловые горы Межгорные впадины |
Складчатые компрессионные хребты Рамповые впадины Присдвиговые хребты Присдвиговые впадины Недеформированные прогибы |
Глубоковолные котловины и желоба Островные дуги Горно-складчатые дуги Задуговые бассейны Реккурентные горы Межгорные впадины Присдвиговые поднятия и впалдины Передовые прогибы |
Складчатые и реккурентные горы Складчатые и блоковые впадины Рифтовые впадины Присдвиговые поднятия и впадины Передовые прогибы |
