- •Вопросы по «Ксенобиологии»
- •Особенности биотрансформации, поступления и выведения кс у разных организмов.
- •Общие представления об избирательном действии кс. Определение понятия избирательности. Роль физико-химических свойств кс в процессах избирательности.
- •Тестирование биологической активности кс. Стандартизация и подбор тест-систем. Специфические и неспецифические модели (тест-объекты).
- •Процессы метаболического превращения кс
- •8. Принципы организации системы тестирования биологической активности ксенобиотиков. Биологический эпиморфизм. Основные цели биотестирования.
- •9. Биоаккумулирование ксенобиотиков. Коэффициент накопления. Одно- и многоразовые дозы.
- •Многоячеечные системы
- •10. Характеристика факторов, влияющих на биоаккумулирование ксенобиотиков. Трофические цепи и экологические пирамиды.
- •11. Характеристика вредного влияния ксенобиотиков на экосистемы: критерии вредного влияния, последствия и формы, зависимость от времени.
- •12. Разнообразие видов биологической активности, причины ее обуславливаю-щие. Системы классификации биологического действия ксенобиотиков.
- •13.Система оценки первичной безопасности ксенобиотиков: характеристика тест-объектов и тест-реакций.
- •Примерный перечень тест-объектов и тест-реакций, используемых в системе первичной оценки безопасности ксенобиотиков
- •14. Экологический мониторинг среды. Биотесты и биоиндикаторы. Использование приемов биотестирования в системе экологического мониторинга.
- •15.Простая и облегченная диффузия ксенобиотиков через биологические мембраны, их отличительные черты.
- •Облегченная диффузия в отличие от простой, может ингибироваться некоторыми соединениями (иногда в весьма малых концентрациях), которые блокируют переносчик.
- •16.Влияние физиологических, генетических и факторов окружающей среды на биотрансформацию ксенобиотиков.
- •17.Основные пути поступления и выведения гидрофильных и гидрофобных ксенобиотиков живыми организмами.
- •18.Характеристика основных процессов поведения ксенобиотиков в экосистемах. Роль адсорбции и перемещения.
- •19.Экологическая опасность процессов разрушения ксенобиотиков в биоценозах.
- •20. Реакции метаболического окисления органическихксенобиотиков, основныетипы и ферменты.
- •21. Общая схема и основные реакции конъюгации в живых системах. Ферменты,катализирующие эти реакции.
- •Антагонизм, аддитивность и синергизм биологического действия кс. Примеры синергизма и схема антагонистических взаимодействий.
- •23.Образование хелатных комплексов. Характеристика лиганд (хелатирующих агентов). Сродство, коэффициент устойчивости.
- •24.Концепция рецепторов. Критерии отнесения молекулы к рецептору. Регуляция внутриклеточных процессов с участием вторичных мессенджеров.
- •25.Амфифильные кс, их классификация (на примере пав). Характеристика этапов их взаимодействия с биологическими мембранами, характер изменения селективности мембраны.
- •26. Роль физико-химических факторов в превращениях ксенобиотиков в окружающей среде
- •1.Фотохимические превращения.
- •2.Окислительно-восстановительные превращения.
- •3.Гидролиз.
- •4.Конъюгация ксенобиотика
- •27.Химиобиологические закономерности кс и подходы, используемые для их установления.
- •28.Понятия токсичности и опасности кс для живых систем. Яды и токсины. Приемы классификации.
- •29 Реакции метаболического восстановления и гидролиза органических ксенобиотиков, основные типы и ферменты.
- •1)Восстановление альдегидов и кетонов в спирты под действием алкогольдегидрогеназ.
- •4) Немикросомное метаболическое восстановление:
- •1)Гидролиз эфиров карбоновых кислот
- •2) Гидролиз амидов, гидразидов и нитрилов
- •3) Гидролиз фосфорорганических веществ
- •30) Активный транспорт ксенобиотиков через биологические мембраны: определение и характеристика основных механизмов.
- •31) Характеристика процессов адсорбции ксенобиотиков. Изотерма Лэнгмюра.
- •32) Экологическая и токсикологическая характеристика оксидов азота, серы и фторсодержащих углеводородов
- •33. Экологическая и токсикологическая характеристика тяжелых металлов
- •34) Экологическая и токсикологическая характеристика пестицидов, удобрений и биогенных элементов
- •Экологическая и токсикологическая характеристика органических ксенобиотиков: полихлорбифенилы, нефть и нефтепродукты, поверхностно-активные вещества.
- •Виды мембранотропных эффектов. Типы мембранотропности кс.
- •Описание процессов связывания молекул кс с активными сайтами биологических мембран в отсутствии диффузионных ограничений.
- •Модели биофазы и Хилла, их использование для описания закономерностей взаимодействия веществ с активными центрами биологических мембран.
- •Пиноцитоз и фагоцитоз кс. Основные этапы.
- •Пассивный транспорт кс. Общие закономерности, виды пассивного транспорта. Движущие силы пассивного транспорта.
- •Масштабы химического загрязнения биосферы. Основные типы и причины роста глобального химического загрязнения.
- •1) Газообразные вещества:
- •2) Тяжелые металлы
- •4) Органические соединения.
- •Связь процессов ионизации молекул кс с их биологической активностью
- •Кс, обладающие большей биологической активностью в ионизированном состоянии.
- •2)Кс, обладающие большей биологической активностью в неионизированном состоянии.
- •3) Кс, проявляющие биологическое действие в виде ионов и неионизированных молекул.
- •44. Поверхностные явления в системах воздух-вода, масло (липид) - вода. Классификация поверхностно-активных веществ. Мицеллообразование пав. Виды мицелл.
- •Развитие биологической реакции на действие эффектора. Многоканальная система передачи сигнала.
- •Экологическая и токсикологическая характеристика моно-, диоксида углерода и озона
- •Основные типы химических связей и их роль в процессах связывания эффектора с мембранактивными сайтами (рецепторами).
- •Ионизация, ее природа. Константа и степень ионизации молекул кс.
- •Периоды и этапы формирования представлений о биологической активности химических соединений.
- •Роль природы превращений и процессов перемещения кс для функционального состояния экосистем.
- •Накопление и распределение как один из механизмов избирательного действия кс. Цитологический механизм избирательного действия.
- •Биохимический механизм избирательного действия кс для различных организмов.
- •Удаление или маскировка как один из механизмов биологического действия хелатирующих агентов. Характеристика антидотов.
- •1. Аденилциклазные и ионизитодфосфатные пути передачи внутриклеточного сигнала
- •Влияние наноматериалов на среду
- •Наноматериалы и примеры их токсическогр действия
Многоячеечные системы
Одноячеечную систему можно распространить на более сложную систему, включающую ряд различных взаимосвязанных ячеек. Каждая ткань животного - почки, печень, сердце, мозг или жировые отложения (ткани) - рассматривается как ячейка. После того как вещество попадает в организм, оно начинает перемещаться током крови. Каждая ячейка характеризуется своим размером, содержанием жира, скоростью тока крови, коэффициентом распределения, определяющим способность вещества перемещаться из крови в ткань. Определив скорость поглощения и скорость выведения (обычно включающую скорость метаболизма в печени) вещества, и подобрав математические соотношения, можно с помощью ЭВМ создать модели многоячеечной системы
10. Характеристика факторов, влияющих на биоаккумулирование ксенобиотиков. Трофические цепи и экологические пирамиды.
– Одной из характеристик самого вещества является устойчивость. Для того чтобы ксенобиотик мог накапливаться в организме, его воздействие на организм должно быть достаточно длительным, особенно когда оно осуществляется через цепь питания. Следовательно, любое аккумулирующееся вещество должно быть устойчивым к возможным в данной среде процессам разрушения, Обычно те ксенобиотики, которые устойчивы в окружающей среде, в большинстве организмов имеют относительно продолжительные периоды полувыведения и способны накапливаться в сравнительно больших количествах, но, конечно, при достаточно высокой концентрации их в окружающей среде.
– Площадь поверхности. Если процесс аккумулирования включает физические стадии (адсорбция, диффузия), степень накопления чужеродного вещества в большей мере зависит от площади поверхности контакта организма с окружающей средой. Это положение можно применить к таким случаям, как адсорбция растениями пестицида из воздуха после опрыскивания или адсорбция организмами ПХБ в водной среде. Величина поверхности на единицу массы или объема повышается при уменьшении размера частицы, Следовательно, если адсорбция в процессе аккумулирования играет значительную роль, то можно ожидать, что более мелкие организмы будут накапливать в единице объема большее количество вещества, чем более крупные.
– Распределение. Большинство организмов содержит значительные жировые отложения; в этих тканях накапливаются ксенобиотики с большими значениями коэффициента распределения. Содержание жира в организме также указывает на его способность аккумулировать данный тип веществ. Так, способность аккумулировать ПХБ коррелировала с содержанием липида в планктоне. Таким образом, степень аккумулирования зависит от способности веществ распределяться в жировых депо. Способность данного ксенобиотика распределяться в жировых депо организма также может влиять на его период полувыведения. Жировые ткани в процессах метаболического преобразования являются не самыми активными. Следовательно, если вещество распределилось в таких тканях, оно может сохраняться там до тех пор, пока организм не израсходует весь жир.
– Среда обитания конкретного организма может существенно влиять на его способность аккумулировать ксенобиотики. Организмы, обитающие на дне среди осадков, подвергаются воздействию более высоких концентраций ксенобиотика, чем находящиеся в верхних слоях того же самого участка водоема.
–Размер частиц, проглатываемых организмами. Поскольку на более мелких частицах, как уже отмечалось, адсорбированное на их поверхности чужеродное вещество содержится в более высоких концентрациях, организмы, проглатывающие такие частицы, будут подвергаться воздействию более высокого содержания ксенобиотика.
– Количество потребляемой пищи. Организмы, нуждающиеся в относительно большом количестве пищи, могут аккумулировать чужеродное вещество из окружающей среды в большей степени при условии, что процесс накопления ксенобиотика не компенсируется более активным процессом его выведения.
–Цепь питания. Ксенобиотики в массовых количествах поступают в неорганические элементы биосферы (воздух, воду, почву). Находясь во внешней среде, чужеродные соединения взаимодействуют с различными органическими элементами биогеоценозов - микроорганизмами, растениями, животными, поступая в конечном итоге по трофическим цепям в организм человека, В этих условиях суммарное количество ксенобиотиков, поступающих в организм человека, в значительной степени определяется интенсивностью их разрушения под действием физико-химических факторов среды (света, воды, тепла и др.), скоростью их деструкции в предшествующих элементах трофических цепей и закономерностями биоконцентрации.
любая экологическая система является совокупностью абиотических элементови и живых организмов, обменивающихся химическими компонентами, энергией и связанных между собой пищевыми (трофическими) цепями. организмы - компоненты экосистем - подразделяются на производителей (продуцентов), потребителей (консументов) и разрушителей (редуцентов), разлагающих сложные органические соединения мертвых остатков.по мере движения ксенобиотика по пищевой цепи к следующему консументу, в организме которого он метаболизируется происходит увеличение концентрации чужеродного вещества.
Вещества поглощаются в определенной последовательности: загрязненные растения поедаются травоядными рыбами и животными, этих рыб и животных поедают плотоядные животные и т. д. существуют два механизма перемещения чужеродного вещества в данной конкретной цепи питания - непосредственное его поглощение из среды и перемещение по цепи питания.
Аккумулирование ксенобиотика в цепи питания определяется его перемещением по этой цепи, что менее 50 % всей массы вещества преобразуется в ткани организма на следующем, более высоком уровне.
Процесс в схеме, где возможны потери ксенобиотика путем экскреции на различных уровнях цепи питания. концентрация чужеродного вещества постепенно повышается в цепи питания.
Стадии деградации
Воздух, вода, почва ----------------------
Фотолиз
Планктон,
водоросли, (Стадии аккумулирования) Метаболизм зоопланктона
растения
Травоядные ---------------------- Метаболизм травоядных
Плотоядные
---------------------- Метаболизм плотоядных
Усиление в цепи питания — схема увеличения концентрации вещества в организмах по мере достижения более высокого трофического уровня
Для понимания движения по пищевым цепям продуктов питания, а также попавших в биоценозы ксенобиотиков строятся называемые экологические пирамиды. В них схематически учитывают плотности популяций (число особей на 1 м2), биомассы (грамм сухого или влажного вещества на 1 м2) или продуктивность в энергетических эквивалентах(скорость поглощения ими данного вещества) (джоулей на 1 м2 в год) для всех членов каждого трофического уровня в данном биоценозе.
поступления в организм чужеродных химических веществ, которые не могут быстро метаболизироваться и полностью экскретироваться во внешнюю среду, начинается накопление этих веществ по ходу пищевой цепи. организмы-потребители, стоящие на более высоких уровнях экологической пирамиды, обладают меньшей суммарной биомассой по сравнению с организмами предыдущего уровня, происходит последовательная биоконцентрация токсикантов, достигающая максимальных значений у конечных консументов, которыми могут являться люди. Накопление токсических элементов может оказывать негативное действие, приводя к нарушению устойчивости экосистем к неблагоприятному влиянию на организм человека.
интегральная реакция организма на действие токсиканта определяется наличием эволюционно выработанных защитных систем, к которым относятся физиолого-биохимические системы биотрансформации, экскреции ксенобиотиков и система иммунного гомеостаза.
В водных и наземных системах механизмы аккумулирования ксенобиотиков различны, они отличаться в пределах одной системы.
В водной среде аккумулирование ксенобиотика протекает по двум механизмам:
- непосредственной адсорбции вещества и (или) его распределения из водной среды;
- распределения по цепи питания.
поглощение из водной среды имеет большее значение, чем распределение по цепи питания. Распределение из среды обитания может быть определяющим процессом, что поверхность контакта организма с водой не является лимитирующим фактором. Рыбы эффективно аккумулируют чужеродные вещества из водной среды, так как имеют жабры с развитой поверхностью, через которые проходит большой объем воды.
В условиях наземной среды чужеродные вещества в почве, и их аккумулирование организмами происходить по цепи питания. концентрация чужеродного вещества в воздухе при испарении мала, а рассеивание в открытом пространстве велика, что аккумулирование ксенобиотика по механизму распределения из атмосферы минимально. Исключение составляют роющие животные, в ограниченной среде.
процесс аккумулирования ксенобиотика наземными организмами должен включать его поглощение организмами, обитающими в почве, и последующее перемещение по наземной цепи питания.
Степень, до которой организм аккумулирует определенный ксенобиотик, зависит от положения организма в цепи питания, но и от его физиологических и морфологических особенностей.
