- •Вопросы по «Ксенобиологии»
- •Особенности биотрансформации, поступления и выведения кс у разных организмов.
- •Общие представления об избирательном действии кс. Определение понятия избирательности. Роль физико-химических свойств кс в процессах избирательности.
- •Тестирование биологической активности кс. Стандартизация и подбор тест-систем. Специфические и неспецифические модели (тест-объекты).
- •Процессы метаболического превращения кс
- •8. Принципы организации системы тестирования биологической активности ксенобиотиков. Биологический эпиморфизм. Основные цели биотестирования.
- •9. Биоаккумулирование ксенобиотиков. Коэффициент накопления. Одно- и многоразовые дозы.
- •Многоячеечные системы
- •10. Характеристика факторов, влияющих на биоаккумулирование ксенобиотиков. Трофические цепи и экологические пирамиды.
- •11. Характеристика вредного влияния ксенобиотиков на экосистемы: критерии вредного влияния, последствия и формы, зависимость от времени.
- •12. Разнообразие видов биологической активности, причины ее обуславливаю-щие. Системы классификации биологического действия ксенобиотиков.
- •13.Система оценки первичной безопасности ксенобиотиков: характеристика тест-объектов и тест-реакций.
- •Примерный перечень тест-объектов и тест-реакций, используемых в системе первичной оценки безопасности ксенобиотиков
- •14. Экологический мониторинг среды. Биотесты и биоиндикаторы. Использование приемов биотестирования в системе экологического мониторинга.
- •15.Простая и облегченная диффузия ксенобиотиков через биологические мембраны, их отличительные черты.
- •Облегченная диффузия в отличие от простой, может ингибироваться некоторыми соединениями (иногда в весьма малых концентрациях), которые блокируют переносчик.
- •16.Влияние физиологических, генетических и факторов окружающей среды на биотрансформацию ксенобиотиков.
- •17.Основные пути поступления и выведения гидрофильных и гидрофобных ксенобиотиков живыми организмами.
- •18.Характеристика основных процессов поведения ксенобиотиков в экосистемах. Роль адсорбции и перемещения.
- •19.Экологическая опасность процессов разрушения ксенобиотиков в биоценозах.
- •20. Реакции метаболического окисления органическихксенобиотиков, основныетипы и ферменты.
- •21. Общая схема и основные реакции конъюгации в живых системах. Ферменты,катализирующие эти реакции.
- •Антагонизм, аддитивность и синергизм биологического действия кс. Примеры синергизма и схема антагонистических взаимодействий.
- •23.Образование хелатных комплексов. Характеристика лиганд (хелатирующих агентов). Сродство, коэффициент устойчивости.
- •24.Концепция рецепторов. Критерии отнесения молекулы к рецептору. Регуляция внутриклеточных процессов с участием вторичных мессенджеров.
- •25.Амфифильные кс, их классификация (на примере пав). Характеристика этапов их взаимодействия с биологическими мембранами, характер изменения селективности мембраны.
- •26. Роль физико-химических факторов в превращениях ксенобиотиков в окружающей среде
- •1.Фотохимические превращения.
- •2.Окислительно-восстановительные превращения.
- •3.Гидролиз.
- •4.Конъюгация ксенобиотика
- •27.Химиобиологические закономерности кс и подходы, используемые для их установления.
- •28.Понятия токсичности и опасности кс для живых систем. Яды и токсины. Приемы классификации.
- •29 Реакции метаболического восстановления и гидролиза органических ксенобиотиков, основные типы и ферменты.
- •1)Восстановление альдегидов и кетонов в спирты под действием алкогольдегидрогеназ.
- •4) Немикросомное метаболическое восстановление:
- •1)Гидролиз эфиров карбоновых кислот
- •2) Гидролиз амидов, гидразидов и нитрилов
- •3) Гидролиз фосфорорганических веществ
- •30) Активный транспорт ксенобиотиков через биологические мембраны: определение и характеристика основных механизмов.
- •31) Характеристика процессов адсорбции ксенобиотиков. Изотерма Лэнгмюра.
- •32) Экологическая и токсикологическая характеристика оксидов азота, серы и фторсодержащих углеводородов
- •33. Экологическая и токсикологическая характеристика тяжелых металлов
- •34) Экологическая и токсикологическая характеристика пестицидов, удобрений и биогенных элементов
- •Экологическая и токсикологическая характеристика органических ксенобиотиков: полихлорбифенилы, нефть и нефтепродукты, поверхностно-активные вещества.
- •Виды мембранотропных эффектов. Типы мембранотропности кс.
- •Описание процессов связывания молекул кс с активными сайтами биологических мембран в отсутствии диффузионных ограничений.
- •Модели биофазы и Хилла, их использование для описания закономерностей взаимодействия веществ с активными центрами биологических мембран.
- •Пиноцитоз и фагоцитоз кс. Основные этапы.
- •Пассивный транспорт кс. Общие закономерности, виды пассивного транспорта. Движущие силы пассивного транспорта.
- •Масштабы химического загрязнения биосферы. Основные типы и причины роста глобального химического загрязнения.
- •1) Газообразные вещества:
- •2) Тяжелые металлы
- •4) Органические соединения.
- •Связь процессов ионизации молекул кс с их биологической активностью
- •Кс, обладающие большей биологической активностью в ионизированном состоянии.
- •2)Кс, обладающие большей биологической активностью в неионизированном состоянии.
- •3) Кс, проявляющие биологическое действие в виде ионов и неионизированных молекул.
- •44. Поверхностные явления в системах воздух-вода, масло (липид) - вода. Классификация поверхностно-активных веществ. Мицеллообразование пав. Виды мицелл.
- •Развитие биологической реакции на действие эффектора. Многоканальная система передачи сигнала.
- •Экологическая и токсикологическая характеристика моно-, диоксида углерода и озона
- •Основные типы химических связей и их роль в процессах связывания эффектора с мембранактивными сайтами (рецепторами).
- •Ионизация, ее природа. Константа и степень ионизации молекул кс.
- •Периоды и этапы формирования представлений о биологической активности химических соединений.
- •Роль природы превращений и процессов перемещения кс для функционального состояния экосистем.
- •Накопление и распределение как один из механизмов избирательного действия кс. Цитологический механизм избирательного действия.
- •Биохимический механизм избирательного действия кс для различных организмов.
- •Удаление или маскировка как один из механизмов биологического действия хелатирующих агентов. Характеристика антидотов.
- •1. Аденилциклазные и ионизитодфосфатные пути передачи внутриклеточного сигнала
- •Влияние наноматериалов на среду
- •Наноматериалы и примеры их токсическогр действия
Наноматериалы и примеры их токсическогр действия
«Нанотехнологии — это ворота, открывающиеся в иной мир».
Нанотехнологии делятся на три типа:
- «инкрементные» составляют промышленное использование наночастиц в автокосметике и красках для автомобилей;
- эволюционные» представлены наномерными датчиками, пользующими флуоресцентные характеристики квантовых точек и электрические свойства углеродных нанотрубок. Данные разработки находятся пока в начальном состоянии;
- «радикальные» нанотехнологии.
Продукцией нанотехнологий являются различные материалы и препараты, содержащие наночастицы. Под наночастицами понимаются частицы, размер которых не превышает 100 нм хотя бы в одном измерении с заданном структурой и свойствами. термин «наночастицы» не отражает принципиально нового содержания, вкладываемого в данное понятие. Во-первых, наночастицы отличаются от объемного материала наличием двумерной метастабильной фазы, обладающей особыми структурными и энергетическими свойствами. Во-вторых, наиболее активные наноструктуры имеют неплоскую форму двумерных слоев, что сопровождается наведением дополнительного дипольного момента и появлением межмолекулярного сопряжения вдоль двумерных границ. В-третьих, появление протяженных плоскостей (особенно сферической и цилиндрической формы) электронного сопряжения возбуждает коллективные электронные и колебательные состояния и способствует делокализации, т. е. распространению валентных электронов по нескольким химическим связям в соединении.
установление возможной токсичности наноматериалов. даже однократная ингаляция углеродных нанотрубок и наночастиц некоторых других типов приводит к воспалительному процессу в легочной ткани с последующим развитием фиброза и некрозом клеток. Наноматериалы обладают нейротоксичностью за счет преодоления гематоэнцефалического барьера, вызывая окислительный стресс в клетках мозга. Кардиотоксичность и гепатотоксичность наноматериалов определяются развитием окислительного стресса и воспалительной реакции, что приводит к некрозу и апоптозу клеток. известно, что наночастицы могут неблагоприятно влиять на систему свёртываемости крови. Фактически в настоящее время токсичность наноматериалов изучена недостаточно, в том числе нет данных по метаболизму и механизму действия, не определены критические органы системы.
При оценке риска следует обратить внимание на три важнейших характеристики наноматериалов.
Во-первых, в большинстве проведенных исследований указывается на то, что определяющим в токсичности наноматериалов является развитие окислительного стресса и повреждение ДНК, что может приводить к апоптозу, некрозу клетки и воспалительной реакции.
Во-вторых, принципиально важной характеристикой является их нерастворимость в воде и биологических средах. Еще одной важной характеристикой наночастиц является показатель их формы — «аспектное отношение», т. е. отношение длины частиц к их минимальному линейному размеру.
Следующим важным этапом является оценка поступления, распределения и выведения наноматериалов из организма. В настоящее время существуют три основных способа попадания наноматериалов в организм человека: перорально, ингаляционный и через кожу. Вопрос о возможных путях поступлении наночастиц различной природы в организм, их прохождения через биологические барьеры, распределения и накопления в различных органах и тканях в настоящее время интенсивно исследуется., оценка безопасности наноматериалов должна включать следующие основные блоки :
- методы количественного определения, обнаружения и идентификации наноматериалов в объектах окружающей среды, биологических средах и пищевых продуктах, позволяющие отличить наноматериалы от их аналогов в макродисперсной форме;
- изучение действия наноматериалов на белки, липиды, нуклеиновые кислоты (РНК, ДНК, клеточные мембраны, рибосомы, ферменты);
- изучение способов проникновения наноматериалов через биомембраны, взаимодействия с мембранными рецепторами;
- изучение изменения свойств наночастиц в составе модельных систем, воспроизводящих различные среды живого организма (кишечное и желудочное содержимое, лимфа, кровь, моча, желчь и т. д.);
- определение параметров хронической и острой токсичности, органотоксичности (нейротоксичность, гепатотоксичность, кардиотоксичность, иммунотоксичность и др.) и отдаленных эффектов (мутагенность, эмбриотоксичность, тератогенность, канцерогенность), а также распределения наноматериалов по органам и тканям;
- определение параметров I и II фазы метаболизма ксенобиотиков и системы антиоксидантной защиты;
- изучение влияний наноматериалов на апоптоз генов, генотоксичность, экспрессию;
- изучение выживаемости пробиотических микроорганизмов нормальной микрофлоры желудочно-кишечного тракта в присутствии наноматериалов, определение воздействия наноматериалов на микробиоценоз желудочно-кишечного тракта.
полная система оценки риска наноматериалов включает обширный комплекс физико-химических, биохимических, молекулярно-биологических, токсикологических тестов и специальных исследований, позволяющих провести оценку их воздействия на биологические объекты .
актуальность исследования токсичности и опасности наночастиц при различных путях поступления в организм, оценки степени потенциального вреда здоровью человека, расчет рисков.
