- •Вопросы по «Ксенобиологии»
- •Особенности биотрансформации, поступления и выведения кс у разных организмов.
- •Общие представления об избирательном действии кс. Определение понятия избирательности. Роль физико-химических свойств кс в процессах избирательности.
- •Тестирование биологической активности кс. Стандартизация и подбор тест-систем. Специфические и неспецифические модели (тест-объекты).
- •Процессы метаболического превращения кс
- •8. Принципы организации системы тестирования биологической активности ксенобиотиков. Биологический эпиморфизм. Основные цели биотестирования.
- •9. Биоаккумулирование ксенобиотиков. Коэффициент накопления. Одно- и многоразовые дозы.
- •Многоячеечные системы
- •10. Характеристика факторов, влияющих на биоаккумулирование ксенобиотиков. Трофические цепи и экологические пирамиды.
- •11. Характеристика вредного влияния ксенобиотиков на экосистемы: критерии вредного влияния, последствия и формы, зависимость от времени.
- •12. Разнообразие видов биологической активности, причины ее обуславливаю-щие. Системы классификации биологического действия ксенобиотиков.
- •13.Система оценки первичной безопасности ксенобиотиков: характеристика тест-объектов и тест-реакций.
- •Примерный перечень тест-объектов и тест-реакций, используемых в системе первичной оценки безопасности ксенобиотиков
- •14. Экологический мониторинг среды. Биотесты и биоиндикаторы. Использование приемов биотестирования в системе экологического мониторинга.
- •15.Простая и облегченная диффузия ксенобиотиков через биологические мембраны, их отличительные черты.
- •Облегченная диффузия в отличие от простой, может ингибироваться некоторыми соединениями (иногда в весьма малых концентрациях), которые блокируют переносчик.
- •16.Влияние физиологических, генетических и факторов окружающей среды на биотрансформацию ксенобиотиков.
- •17.Основные пути поступления и выведения гидрофильных и гидрофобных ксенобиотиков живыми организмами.
- •18.Характеристика основных процессов поведения ксенобиотиков в экосистемах. Роль адсорбции и перемещения.
- •19.Экологическая опасность процессов разрушения ксенобиотиков в биоценозах.
- •20. Реакции метаболического окисления органическихксенобиотиков, основныетипы и ферменты.
- •21. Общая схема и основные реакции конъюгации в живых системах. Ферменты,катализирующие эти реакции.
- •Антагонизм, аддитивность и синергизм биологического действия кс. Примеры синергизма и схема антагонистических взаимодействий.
- •23.Образование хелатных комплексов. Характеристика лиганд (хелатирующих агентов). Сродство, коэффициент устойчивости.
- •24.Концепция рецепторов. Критерии отнесения молекулы к рецептору. Регуляция внутриклеточных процессов с участием вторичных мессенджеров.
- •25.Амфифильные кс, их классификация (на примере пав). Характеристика этапов их взаимодействия с биологическими мембранами, характер изменения селективности мембраны.
- •26. Роль физико-химических факторов в превращениях ксенобиотиков в окружающей среде
- •1.Фотохимические превращения.
- •2.Окислительно-восстановительные превращения.
- •3.Гидролиз.
- •4.Конъюгация ксенобиотика
- •27.Химиобиологические закономерности кс и подходы, используемые для их установления.
- •28.Понятия токсичности и опасности кс для живых систем. Яды и токсины. Приемы классификации.
- •29 Реакции метаболического восстановления и гидролиза органических ксенобиотиков, основные типы и ферменты.
- •1)Восстановление альдегидов и кетонов в спирты под действием алкогольдегидрогеназ.
- •4) Немикросомное метаболическое восстановление:
- •1)Гидролиз эфиров карбоновых кислот
- •2) Гидролиз амидов, гидразидов и нитрилов
- •3) Гидролиз фосфорорганических веществ
- •30) Активный транспорт ксенобиотиков через биологические мембраны: определение и характеристика основных механизмов.
- •31) Характеристика процессов адсорбции ксенобиотиков. Изотерма Лэнгмюра.
- •32) Экологическая и токсикологическая характеристика оксидов азота, серы и фторсодержащих углеводородов
- •33. Экологическая и токсикологическая характеристика тяжелых металлов
- •34) Экологическая и токсикологическая характеристика пестицидов, удобрений и биогенных элементов
- •Экологическая и токсикологическая характеристика органических ксенобиотиков: полихлорбифенилы, нефть и нефтепродукты, поверхностно-активные вещества.
- •Виды мембранотропных эффектов. Типы мембранотропности кс.
- •Описание процессов связывания молекул кс с активными сайтами биологических мембран в отсутствии диффузионных ограничений.
- •Модели биофазы и Хилла, их использование для описания закономерностей взаимодействия веществ с активными центрами биологических мембран.
- •Пиноцитоз и фагоцитоз кс. Основные этапы.
- •Пассивный транспорт кс. Общие закономерности, виды пассивного транспорта. Движущие силы пассивного транспорта.
- •Масштабы химического загрязнения биосферы. Основные типы и причины роста глобального химического загрязнения.
- •1) Газообразные вещества:
- •2) Тяжелые металлы
- •4) Органические соединения.
- •Связь процессов ионизации молекул кс с их биологической активностью
- •Кс, обладающие большей биологической активностью в ионизированном состоянии.
- •2)Кс, обладающие большей биологической активностью в неионизированном состоянии.
- •3) Кс, проявляющие биологическое действие в виде ионов и неионизированных молекул.
- •44. Поверхностные явления в системах воздух-вода, масло (липид) - вода. Классификация поверхностно-активных веществ. Мицеллообразование пав. Виды мицелл.
- •Развитие биологической реакции на действие эффектора. Многоканальная система передачи сигнала.
- •Экологическая и токсикологическая характеристика моно-, диоксида углерода и озона
- •Основные типы химических связей и их роль в процессах связывания эффектора с мембранактивными сайтами (рецепторами).
- •Ионизация, ее природа. Константа и степень ионизации молекул кс.
- •Периоды и этапы формирования представлений о биологической активности химических соединений.
- •Роль природы превращений и процессов перемещения кс для функционального состояния экосистем.
- •Накопление и распределение как один из механизмов избирательного действия кс. Цитологический механизм избирательного действия.
- •Биохимический механизм избирательного действия кс для различных организмов.
- •Удаление или маскировка как один из механизмов биологического действия хелатирующих агентов. Характеристика антидотов.
- •1. Аденилциклазные и ионизитодфосфатные пути передачи внутриклеточного сигнала
- •Влияние наноматериалов на среду
- •Наноматериалы и примеры их токсическогр действия
Биохимический механизм избирательного действия кс для различных организмов.
Избирательность, обусловленная биохимическими различиями. На первый взгляд многие биохимические процессы у всех живых существ, животные, растения или микробы, протекают одинаково, поэтому биохимия не представляет возможности для проявления избирательного действия. первичной единицей жизни во всех ее проявлениях служит клетка (даже вирусы паразитируют в клетках, обеспечивая себе питание и размножение). Все виды живого содержат нуклеиновую кислоту, в которой закодирована вся информация о функциях данного организма. такие вещества, как колхицин, нарушают митоз у всех организмов на одной и той же стадии. Точно так же одинаково протекают во всех клетках катаболические процессы, а также процессы гликолиза. Аденозинтрифосфат служит универсальной «валютой» в энергетическом обмене.
Избирательность действия КС определяется различиями в процессах их биотрансформации, а также зависит от его влияния на какой-либо важный биохимический процесс, который у чувствительного организма имеется, а у устойчивого или отсутствует, или не столь чувствителен к данному веществу.
известны вещества, влияющие на синтез ДНК, ингибирующие начальные стадии синтеза ДНК; вещества, взаимодействующие с ДНК (ингибиторы, останавливающие как ее репликацию, так и транскрипцию); вещества, разрушающие ДНК (повышается температура плавления, вязкость, уменьшается плотность). Также известны вещества-ингибиторы синтеза РНК, ингибиторы синтеза белков, ферментов, различных путей катаболизма (метаболизм азота и фосфора), метаболизма углеводов, липидов, цикла трикарбоновых кислот, транспорта электронов и т. д.
Известно, что сульфаниламиды обладают антибактериальным действием. Это связано с тем, что они ингибируют стадии синтеза ДНК. Дегидрофолиевая кислота является предшественником кофермента, необходимого для биосинтеза тимина и всех пуриновых оснований. Без этих субстратов бактерии быстро погибают, так как им не из чего синтезировать ДНК. Два фактора, определяющие избирательность противобактериальных сульфаниламидов, взаимно усиливают друг друга: 1) у млекопитающих отсутствует фермент, синтезирующий дегидрофолиевую кислоту, и поэтому они толерантны к сульфаниламидам и 2) у патогенных бактерий отсутствуют мембранные белки, с помощью которых дегидрофолиевая кислота попадает в клетки млекопитающих из пищи.
Механизм инсектицидного действия ДДТ связан с его способностью блокировать ионные каналы у холоднокровных. Избирательность действия ДДТ обусловлена тем, что при более высокой температуре, которую имеют тела теплокровных, не образуется донорно- акцепторной связи между бензольными кольцами препарата и противоположно заряженной поверхностью мембраны около устья канала.
Одним из избирательных эффектов ДДТ, проявляющихся у птиц, является наблюдаемое под его действием нарушение кальциевого обмена, вследствие чего яичная скорлупа оказывается более тонкой. Такие яйца при насиживании раздавливаются, и птицы не выводят птенцов.
ДДТ нарушает некоторые важные процессы в растениях так, например, он подавляет фотосинтез у водорослей.
Наглядным примером биохимической избирательности, связанным с процессом биотрансформации, является случай, когда устойчивый организм способен разрушать КС до нетоксичных соединений, а чувствительный - не способен. Хорошо известно, что растения кукурузы обезвреживают гербицид симазнн, гидролизуя в его молекуле хлор в положении 2 до гидроксигруппы. Прямо противоположным образом обстоит дело, когда КС не обладает токсичностью и превращается в токсическое соединение в самих организмах, после чего убивает их; в таких ситуациях любой организм, не способный осуществлять это превращение, будет устойчив к данному веществу.
Известно, что некоторые растения способны осуществлять (3- окисление хлорфеноксиалкилкарбоновых кислот, при котором от боковой цепи отщепляется в каждом цикле окисления двууглеродный фрагмент. Если исходная цепь содержит за вычетом карбоксильной фуппы нечетное число атомов углерода, то конечным продуктом р- окисления оказывается всегда токсичное производное уксусной кислоты; если же она содержит четное число атомов, то образуется слаботоксичное производное.Но не все растения способны осуществлять (3-окисление хлорфеноксиалкилкарбоновых кислот. Поэтому если обработать бобовую культуру и присутствующие сорняки хлорфеноксимасляной кислотой (2,4-DM), имеющей в боковой цепи три промежуточных атома углерода, то в сорняках это соединение превратится в хлорфеноксиуксусную кислоту (2,4-D), которая их убьет; в бобовых она остается неизмененной и соответственно не причинит вреда.
Другой пример биохимической избирательности, связанный с процессами биотрансформации, можно продемонстрировать на характере действия инсектицидов. Механизм избирательного действия большинства самых эффективных фосфорорганических инсектицидов основан на метаболических превращениях. Биотрансформация, которая происходит у насекомых, делает для них эти соединения более токсичными, тогда как в организме млекопитающих эти инсектициды превращаются в менее токсические производные.
У бактерий и растений ароматические аминокислоты - фенилаланин и триптофан - образуются из гликолиевой кислоты. Млекопитающие не способны синтезировать бензольное кольцо и поэтому вынуждены получать эти две аминокислоты с пищей. Так как шикимовая кислота не участвует в метаболизме млекопитающих, ее биосинтез и метаболизм являются прекрасными мишенями для избирательно токсических агентов.
Многие простые молекулы могут разобщать окисление и фосфорилирование, в результате чего энергия окисления питательных веществ не может накапливаться в виде АТФ. Известны три класса разобщающих агентов; жирорастворимые слабые кислоты, алкилирующие агенты и жирорастворимые сильные основания. Механизм действия фенола и других слабых кислот, представителей самого многочисленного на сегодняшний день класса разобщающих агентов, заключается в переносе ионов водорода через внутреннюю мембрану митохондрий, что приводит к падению мембранного потенциала до нуля. Это, в свою очередь, вызывает прекращение синтеза АТФ.
Особый интерес представляют случаи избирательно протекающих метаболических реакций, отличающие человека от большинства других млекопитающих, но именно в этих различиях кроются опасности неудач при переходе от опытов на лабораторных животных к лечению людей.
Противобактериальный препарат сульфадиметоксин выделяется из организма человека и приматов в виде N'-глюкоронида, а из организма обычных лабораторных животных - в виде N-ацетилпроизводного.
Отчетливые различия можно обнаружить и у одной особи. Например, глутаминсинтетаза почек крысы в 10 раз быстрее перерабатывает свой субстрат, чем фермент-аналог из ее мышцы. В опухолевых (раковых) клетках клеточный цикл протекает быстрее, чем в здоровых: поэтому они более чувствительны к действию лекарственных препаратов, вмешивающихся в синтез нуклеотидов.
