- •Вопросы по «Ксенобиологии»
- •Особенности биотрансформации, поступления и выведения кс у разных организмов.
- •Общие представления об избирательном действии кс. Определение понятия избирательности. Роль физико-химических свойств кс в процессах избирательности.
- •Тестирование биологической активности кс. Стандартизация и подбор тест-систем. Специфические и неспецифические модели (тест-объекты).
- •Процессы метаболического превращения кс
- •8. Принципы организации системы тестирования биологической активности ксенобиотиков. Биологический эпиморфизм. Основные цели биотестирования.
- •9. Биоаккумулирование ксенобиотиков. Коэффициент накопления. Одно- и многоразовые дозы.
- •Многоячеечные системы
- •10. Характеристика факторов, влияющих на биоаккумулирование ксенобиотиков. Трофические цепи и экологические пирамиды.
- •11. Характеристика вредного влияния ксенобиотиков на экосистемы: критерии вредного влияния, последствия и формы, зависимость от времени.
- •12. Разнообразие видов биологической активности, причины ее обуславливаю-щие. Системы классификации биологического действия ксенобиотиков.
- •13.Система оценки первичной безопасности ксенобиотиков: характеристика тест-объектов и тест-реакций.
- •Примерный перечень тест-объектов и тест-реакций, используемых в системе первичной оценки безопасности ксенобиотиков
- •14. Экологический мониторинг среды. Биотесты и биоиндикаторы. Использование приемов биотестирования в системе экологического мониторинга.
- •15.Простая и облегченная диффузия ксенобиотиков через биологические мембраны, их отличительные черты.
- •Облегченная диффузия в отличие от простой, может ингибироваться некоторыми соединениями (иногда в весьма малых концентрациях), которые блокируют переносчик.
- •16.Влияние физиологических, генетических и факторов окружающей среды на биотрансформацию ксенобиотиков.
- •17.Основные пути поступления и выведения гидрофильных и гидрофобных ксенобиотиков живыми организмами.
- •18.Характеристика основных процессов поведения ксенобиотиков в экосистемах. Роль адсорбции и перемещения.
- •19.Экологическая опасность процессов разрушения ксенобиотиков в биоценозах.
- •20. Реакции метаболического окисления органическихксенобиотиков, основныетипы и ферменты.
- •21. Общая схема и основные реакции конъюгации в живых системах. Ферменты,катализирующие эти реакции.
- •Антагонизм, аддитивность и синергизм биологического действия кс. Примеры синергизма и схема антагонистических взаимодействий.
- •23.Образование хелатных комплексов. Характеристика лиганд (хелатирующих агентов). Сродство, коэффициент устойчивости.
- •24.Концепция рецепторов. Критерии отнесения молекулы к рецептору. Регуляция внутриклеточных процессов с участием вторичных мессенджеров.
- •25.Амфифильные кс, их классификация (на примере пав). Характеристика этапов их взаимодействия с биологическими мембранами, характер изменения селективности мембраны.
- •26. Роль физико-химических факторов в превращениях ксенобиотиков в окружающей среде
- •1.Фотохимические превращения.
- •2.Окислительно-восстановительные превращения.
- •3.Гидролиз.
- •4.Конъюгация ксенобиотика
- •27.Химиобиологические закономерности кс и подходы, используемые для их установления.
- •28.Понятия токсичности и опасности кс для живых систем. Яды и токсины. Приемы классификации.
- •29 Реакции метаболического восстановления и гидролиза органических ксенобиотиков, основные типы и ферменты.
- •1)Восстановление альдегидов и кетонов в спирты под действием алкогольдегидрогеназ.
- •4) Немикросомное метаболическое восстановление:
- •1)Гидролиз эфиров карбоновых кислот
- •2) Гидролиз амидов, гидразидов и нитрилов
- •3) Гидролиз фосфорорганических веществ
- •30) Активный транспорт ксенобиотиков через биологические мембраны: определение и характеристика основных механизмов.
- •31) Характеристика процессов адсорбции ксенобиотиков. Изотерма Лэнгмюра.
- •32) Экологическая и токсикологическая характеристика оксидов азота, серы и фторсодержащих углеводородов
- •33. Экологическая и токсикологическая характеристика тяжелых металлов
- •34) Экологическая и токсикологическая характеристика пестицидов, удобрений и биогенных элементов
- •Экологическая и токсикологическая характеристика органических ксенобиотиков: полихлорбифенилы, нефть и нефтепродукты, поверхностно-активные вещества.
- •Виды мембранотропных эффектов. Типы мембранотропности кс.
- •Описание процессов связывания молекул кс с активными сайтами биологических мембран в отсутствии диффузионных ограничений.
- •Модели биофазы и Хилла, их использование для описания закономерностей взаимодействия веществ с активными центрами биологических мембран.
- •Пиноцитоз и фагоцитоз кс. Основные этапы.
- •Пассивный транспорт кс. Общие закономерности, виды пассивного транспорта. Движущие силы пассивного транспорта.
- •Масштабы химического загрязнения биосферы. Основные типы и причины роста глобального химического загрязнения.
- •1) Газообразные вещества:
- •2) Тяжелые металлы
- •4) Органические соединения.
- •Связь процессов ионизации молекул кс с их биологической активностью
- •Кс, обладающие большей биологической активностью в ионизированном состоянии.
- •2)Кс, обладающие большей биологической активностью в неионизированном состоянии.
- •3) Кс, проявляющие биологическое действие в виде ионов и неионизированных молекул.
- •44. Поверхностные явления в системах воздух-вода, масло (липид) - вода. Классификация поверхностно-активных веществ. Мицеллообразование пав. Виды мицелл.
- •Развитие биологической реакции на действие эффектора. Многоканальная система передачи сигнала.
- •Экологическая и токсикологическая характеристика моно-, диоксида углерода и озона
- •Основные типы химических связей и их роль в процессах связывания эффектора с мембранактивными сайтами (рецепторами).
- •Ионизация, ее природа. Константа и степень ионизации молекул кс.
- •Периоды и этапы формирования представлений о биологической активности химических соединений.
- •Роль природы превращений и процессов перемещения кс для функционального состояния экосистем.
- •Накопление и распределение как один из механизмов избирательного действия кс. Цитологический механизм избирательного действия.
- •Биохимический механизм избирательного действия кс для различных организмов.
- •Удаление или маскировка как один из механизмов биологического действия хелатирующих агентов. Характеристика антидотов.
- •1. Аденилциклазные и ионизитодфосфатные пути передачи внутриклеточного сигнала
- •Влияние наноматериалов на среду
- •Наноматериалы и примеры их токсическогр действия
33. Экологическая и токсикологическая характеристика тяжелых металлов
О масштабах загрязнения тяжелыми металлами можно судить из данных, об общемировое годовое производство. Однако необходимо учитывать и другие источники. Например, 1,5-2 тыс. т ртути ежегодно поступает в биосферу при переработке минералов и руд, 0,1-8 тыс. т - при сжигании топлива; ежегодно в биосферу при сжигании угля попадает около 3,5 тыс. т свинца, 56 тыс. т - в результате выветривания и 110 тыс. т выносят реки.
Степень токсичности тяжелых металлов для человека и животных, а также для растений неодинакова и колеблется в весьма широких пределах. К наиболее токсичных металлов следует отнести кадмий, ртуть, свинец, хром и некоторые другие; они оказывают повреждающее действие на биообъекты в концентрациях, не превышающих 1 мг/л. Так, цинк, титан характеризуются низкой токсичностью для человека и теплокровных животных, но даже в низких концентрациях губительно действуют на рыб и других обитателей водных экосистем.
часто металлы, в том числе и высокотоксичные, попадают в окружающую среду в результате промышленных сбросов в водоемы со сточными водами, не прошедшими эффективной очистки, а также использование пестицидов, в состав которых они входят.
В ряде случаев происходит депонирование металлов в придонных слоях, особенно значительное в холодное время; по мере повышения температуры происходит постепенное их растворение. Для повреждения механизмов природного самоочищения водоемов бывает достаточным кратковременное повышение концентрации металлов в водной экосистеме, что весьма существенно при организации мониторинга тяжелых металлов в сточных водах.
Кадмий попав в живой организм, влияют на него губительно. важен фактор длительности воздействия кадмия на организм человека и животных в связи с его способностью накапливаться в печени, почках, поджелудочной и щитовидной железах. Кадмий характеризуется выраженной нефротоксичностью при попадании в организм с питьевой водой. Высокой чувствительностью к действию кадмия характеризуются водные организмы. пребывание рыб на протяжении суток в воде с содержанием Cd2+ 0,001-0,3 мг/л приводит к их гибели.
Свинец попадает в окружающую среду в больших количествах. Ежегодно в земную атмосферу выбрасывается около миллиона тонн его соединений, значительная часть которых водорастворима, что обусловливает экологическую опасность свинца. Основной источник - этилированный бензин. Токсикологическая опасность свинца усугубляется его активным всасыванием в пищеварительном тракте человека и животных, значительным объемом распределения в тканях и накоплением в костях. Депонированный в костях свинец способен поступать в кровь, с током которой доставляется в различные органы. в организм взрослого человека с водой и продуктами питания за сутки поступает 0,3 мг свинца и еще 0,3 мг попадает из табачного дыма у интенсивных курильщиков.
хронического отравления свинцом наблюдаются при длительном употреблении питьевой воды, в которой его содержание достигает 0,04 -1 мг/л.
опасному воздействию свинца подвергаются рабочие, занятые на его добыче в шахтах, а также при выплавке-металл поступает в организм ингаляционным путем.
Примерно 35 % свинца, попавшего в дыхательные пути человека, оседает в легких. Около 10 % свинца, поступившего с продуктами питания в пищеварительный тракт, всасывается. Выведение свинца из организма человека осуществляется (более 70 %) почками и в меньшей мере через пищеварительный тракт (~ 10 %).
в Гренландии исследования показали, что содержание свинца во льду, образованном примерно в середине XVIII веке оказалось примерно в 25 раз выше, чем во льду, образование которого было отнесено к VIII в. до н. э. С г 750 г. накопление свинца в ледниках Гренландии постоянно возрастает. С 40-х гг. XX в. этот процесс усилился и продолжается до настоящего времени.
Определенную роль в накоплении свинца в экосистемах играют растения, получающие металл не только из атмосферы, но и из почвы. Отмечается видовая специфичность растений при его накоплении. Так, при выращивании растений присутствующий в атмосфере свинец обнаружен в листьях салата и бобов, но практически отсутствует в томатах, кочанной капусте, картофеле и моркови.
Свинцовая интоксикация вызывает нарушение биосинтеза гемоглобина на уровне ингибирования левулинатдегидратазы и гемсинтетазы. Имеются сведения о нарушении синтеза цитохрома Р-450 при свинцовой интоксикации.
Главной мишенью воздействия свинца при хронических отравлениях являются центральная и периферическая нервные системы (свинцовая энцефалопатия: появление головной боли, нарушение сна, памяти, возникновение тремора, галлюцинаций). Для различных вариантов отравления свинцом характерно поражение почек, пищеварительного тракта.
Ртуть и ее соединения относятся к веществам общетоксического действия, вызывающим у людей летальный исход, попадая в организм с питьевой водой в количестве 75-300 мг в сутки. Наиболее токсична двухлористая ртуть (сулема), однократная летальная доза которой составляет для человека 0,2-0,5 г. Ртуть характеризуется высокой нефро токсичностью, приводящей к быстро развивающейся почечной недостаточности. Выведение ртути осуществляется почками, через пищеварительный тракт, потовыми и молочными железами.
Начиная с концентрации 0,006-0,01 мг/л ртуть в виде водорастворимых солей оказывает губительное влияние на рыб и другие водные организмы.
При отравлениях ртутью, особенно ее органическими соединениями, отчетливо выражены симптомы поражений нервной системы (парезы, параличи, нарушения зрения и слуха).
