- •Вопросы по «Ксенобиологии»
- •Особенности биотрансформации, поступления и выведения кс у разных организмов.
- •Общие представления об избирательном действии кс. Определение понятия избирательности. Роль физико-химических свойств кс в процессах избирательности.
- •Тестирование биологической активности кс. Стандартизация и подбор тест-систем. Специфические и неспецифические модели (тест-объекты).
- •Процессы метаболического превращения кс
- •8. Принципы организации системы тестирования биологической активности ксенобиотиков. Биологический эпиморфизм. Основные цели биотестирования.
- •9. Биоаккумулирование ксенобиотиков. Коэффициент накопления. Одно- и многоразовые дозы.
- •Многоячеечные системы
- •10. Характеристика факторов, влияющих на биоаккумулирование ксенобиотиков. Трофические цепи и экологические пирамиды.
- •11. Характеристика вредного влияния ксенобиотиков на экосистемы: критерии вредного влияния, последствия и формы, зависимость от времени.
- •12. Разнообразие видов биологической активности, причины ее обуславливаю-щие. Системы классификации биологического действия ксенобиотиков.
- •13.Система оценки первичной безопасности ксенобиотиков: характеристика тест-объектов и тест-реакций.
- •Примерный перечень тест-объектов и тест-реакций, используемых в системе первичной оценки безопасности ксенобиотиков
- •14. Экологический мониторинг среды. Биотесты и биоиндикаторы. Использование приемов биотестирования в системе экологического мониторинга.
- •15.Простая и облегченная диффузия ксенобиотиков через биологические мембраны, их отличительные черты.
- •Облегченная диффузия в отличие от простой, может ингибироваться некоторыми соединениями (иногда в весьма малых концентрациях), которые блокируют переносчик.
- •16.Влияние физиологических, генетических и факторов окружающей среды на биотрансформацию ксенобиотиков.
- •17.Основные пути поступления и выведения гидрофильных и гидрофобных ксенобиотиков живыми организмами.
- •18.Характеристика основных процессов поведения ксенобиотиков в экосистемах. Роль адсорбции и перемещения.
- •19.Экологическая опасность процессов разрушения ксенобиотиков в биоценозах.
- •20. Реакции метаболического окисления органическихксенобиотиков, основныетипы и ферменты.
- •21. Общая схема и основные реакции конъюгации в живых системах. Ферменты,катализирующие эти реакции.
- •Антагонизм, аддитивность и синергизм биологического действия кс. Примеры синергизма и схема антагонистических взаимодействий.
- •23.Образование хелатных комплексов. Характеристика лиганд (хелатирующих агентов). Сродство, коэффициент устойчивости.
- •24.Концепция рецепторов. Критерии отнесения молекулы к рецептору. Регуляция внутриклеточных процессов с участием вторичных мессенджеров.
- •25.Амфифильные кс, их классификация (на примере пав). Характеристика этапов их взаимодействия с биологическими мембранами, характер изменения селективности мембраны.
- •26. Роль физико-химических факторов в превращениях ксенобиотиков в окружающей среде
- •1.Фотохимические превращения.
- •2.Окислительно-восстановительные превращения.
- •3.Гидролиз.
- •4.Конъюгация ксенобиотика
- •27.Химиобиологические закономерности кс и подходы, используемые для их установления.
- •28.Понятия токсичности и опасности кс для живых систем. Яды и токсины. Приемы классификации.
- •29 Реакции метаболического восстановления и гидролиза органических ксенобиотиков, основные типы и ферменты.
- •1)Восстановление альдегидов и кетонов в спирты под действием алкогольдегидрогеназ.
- •4) Немикросомное метаболическое восстановление:
- •1)Гидролиз эфиров карбоновых кислот
- •2) Гидролиз амидов, гидразидов и нитрилов
- •3) Гидролиз фосфорорганических веществ
- •30) Активный транспорт ксенобиотиков через биологические мембраны: определение и характеристика основных механизмов.
- •31) Характеристика процессов адсорбции ксенобиотиков. Изотерма Лэнгмюра.
- •32) Экологическая и токсикологическая характеристика оксидов азота, серы и фторсодержащих углеводородов
- •33. Экологическая и токсикологическая характеристика тяжелых металлов
- •34) Экологическая и токсикологическая характеристика пестицидов, удобрений и биогенных элементов
- •Экологическая и токсикологическая характеристика органических ксенобиотиков: полихлорбифенилы, нефть и нефтепродукты, поверхностно-активные вещества.
- •Виды мембранотропных эффектов. Типы мембранотропности кс.
- •Описание процессов связывания молекул кс с активными сайтами биологических мембран в отсутствии диффузионных ограничений.
- •Модели биофазы и Хилла, их использование для описания закономерностей взаимодействия веществ с активными центрами биологических мембран.
- •Пиноцитоз и фагоцитоз кс. Основные этапы.
- •Пассивный транспорт кс. Общие закономерности, виды пассивного транспорта. Движущие силы пассивного транспорта.
- •Масштабы химического загрязнения биосферы. Основные типы и причины роста глобального химического загрязнения.
- •1) Газообразные вещества:
- •2) Тяжелые металлы
- •4) Органические соединения.
- •Связь процессов ионизации молекул кс с их биологической активностью
- •Кс, обладающие большей биологической активностью в ионизированном состоянии.
- •2)Кс, обладающие большей биологической активностью в неионизированном состоянии.
- •3) Кс, проявляющие биологическое действие в виде ионов и неионизированных молекул.
- •44. Поверхностные явления в системах воздух-вода, масло (липид) - вода. Классификация поверхностно-активных веществ. Мицеллообразование пав. Виды мицелл.
- •Развитие биологической реакции на действие эффектора. Многоканальная система передачи сигнала.
- •Экологическая и токсикологическая характеристика моно-, диоксида углерода и озона
- •Основные типы химических связей и их роль в процессах связывания эффектора с мембранактивными сайтами (рецепторами).
- •Ионизация, ее природа. Константа и степень ионизации молекул кс.
- •Периоды и этапы формирования представлений о биологической активности химических соединений.
- •Роль природы превращений и процессов перемещения кс для функционального состояния экосистем.
- •Накопление и распределение как один из механизмов избирательного действия кс. Цитологический механизм избирательного действия.
- •Биохимический механизм избирательного действия кс для различных организмов.
- •Удаление или маскировка как один из механизмов биологического действия хелатирующих агентов. Характеристика антидотов.
- •1. Аденилциклазные и ионизитодфосфатные пути передачи внутриклеточного сигнала
- •Влияние наноматериалов на среду
- •Наноматериалы и примеры их токсическогр действия
30) Активный транспорт ксенобиотиков через биологические мембраны: определение и характеристика основных механизмов.
Активный транспорт веществ осуществляется за счет сопряжения электрохимических градиентов либо с участием молекулярных машин (АТФазы). Активный перенос происходит c затратой энергии и идет против градиента электрохимического потенциала.
Различается первичный и вторичный (или сопряженный) активный транспорт.
Первичный активный транспорт - трансмембранный векторный перенос веществ - осуществляется в ходе реакции энергетического преобразования в АТФазных системах или окислительно-восстановительной цепи (ОВЦ), т. е. используется энергия либо АТФ, либо энергия OB реакций. Он подразделяется на:
а) электрогенный активный транспорт - первичный активный перенос веществ через мембрану во время АТФазной или окислительно-восстановительной реакциях, сопровождаемых генерацией электрического потенциала;
б) электронейтральный активный транспорт - первичный активный перенос веществ во время АТФазной или ОВ-реакциях, не сопровождающихся генерацией электрического потенциала (стехиометрия обмена 1:1).
Вторичный активный перенос совершается, когда в качестве энергетических источников используются градиенты электрохимических потенциалов других ионов. Например, электрохимический градиент ионов Н+ для сопряженного транспорта анионов, сахаров, аминокислот и других веществ в клетку (симпорт или котранспорт) или, напротив, для вывода ионов Na+ из клетки (антипорт или противотранспорт).
Согласно классической модели активного переноса, растворенная молекула соединяется с носителем. По одну сторону мембраны носитель в результате химической реакции, протекающей с поглощением метаболической энергии, например в форме АТФ, видоизменяется таким образом, что он приобретает сильное сродство к подлежащей переносу молекуле и присоединяет ее к себе (активация). Образовавшийся комплекс носителя с этой молекулой проходит через мембрану (переориентируется). Затем происходит вторая химическая реакция, в результате которой сродство носителя к транспортируемой молекуле уменьшается; она высвобождается и выделяется внутрь (релаксация). Затем цикл повторяется. Процессом‚ идущим с потреблением энергии, является модифицирование структуры носителя.
широко в живых системах распространены и изучены Nа+/К+-АТФазы (животные клетки и гликофиты, морские водоросли) и Н+-АТФаза, которые могут работать в режиме переноса Н+ и Н+/К+ обмена на плазматических мембранах растительных клеток, митохондрий. Все Nа+/К+-АТФазные системы и их препараты имеют ряд общих свойств. Так, для их активации необходим Mg2+,константа Км составляет 10 мM для Na+ и 1 мM для К+; в системе имеется два центра связывания катионов - один из них расположен внутри клетки и связывает Na+: a другой - снаружи и связывает К+; оптимум рН составляет 7,5; все эти АТФазы ингибируются различными гликозидами (например, уабаин подавляет активность фермента на 50 % в концентрации 10-7 – 10-4 М). В оптимальных условиях при расщеплении одной молекулы АТФ происходит перенос ионов со стехиометрией 3 Nа+/2 К+ (натрий наружу, калий внутрь).
Для каждого вещества имеется свой носитель, который модифицирует свою структуру, взаимодействуя с АТФ при участии фермента, специфичного для данного носителя. Таким образом, сколько транспортируемых веществ, столько и механизмов активного транспорта.
В настоящее время все большую популярность завоевывает точка зрения, согласно которой меняется один универсальный механизм энергообеспечения активного переноса различных соединений как заряженных, так и нейтральных - электрохимические потенциалы ионов натрия или протонов, которые образуются благодаря работе Nа+/К+-АТФазы (животные клетки), Н+-АТФазы (растительные клетки). В этом случае создаются электрический и концентрационный градиенты, определяющие движение веществ.
Пример – работа Н+-АТФазной помпы плазмалеммы растительных клеток:
Выход протонов из клетки сопряжен с работой Н+-АТФазы плазмалеммы и является активным процессом, в результате которого на мембране создается электрохимический градиент ΔμH. Электрохимический градиент любого вещества включает электрическую и концентрационную составляющие. В случае переноса положительно заряженной частицы наружу на мембране устанавливается более высокий по абсолютной величине потенциал ΔΨ (внутренняя сторона заряжена отрицательно по отношению к наружной) и изменяется разность концентраций переносимого иона, в данном случае ΔрН. Создавшаяся ситуация приводит к тому, что калий (или другой положительно заряженный катион) по градиенту электрохимического потенциала, а протон по градиенту концентрации входят в клетку. При своем движении внутрь клетки протон активирует переносчик, транспортирующий либо анион, либо аминокислоты, либо другие соединения.
Вторичный активный транспорт приводится в действие за счет энергии, запасенной в градиентах веществ, а не путем прямого гидролиза АТФ. Все они работают как котранспортные системы: одни функционируют по принципу симпорта, а другие - по принципу антипорта. В животных клетках котранспортируемым ионом обычно оказывается Nа+. Например, активный транспорт некоторых сахаров и аминокислот внутрь животных клеток обусловливается градиентом Nа+ через плазматическую мембрану. Всасывание глюкозы в клетки кишечника и почек достигается с помощью системы симпорта, в которой глюкоза и ионы Na+ связываются c различными участками на белке-переносчике глюкозы; Na+ стремится войти в клетку по своему
электрохимическому градиенту и активирует переносчик, перемещаюший глюкозу внутрь. Чем выше градиент Nа+, тем больше скорость всасывания глюкозы. Наоборот, если концентрация Nа+ во внеклеточной среде заметно уменьшается, транспорт глюкозы останавливается. Ионы Nа+, проникающие в клетку вместе с глюкозой, выкачиваются обратно Nа+/К+-АТФазой‚ поддерживающей градиент концентрации Nа+.
Среди многих систем, с помощью которых осуществляется транспорт веществ против градиента химического (электрохимического) потенциала, вторичные механизмы занимают столь важное место, что некоторые исследователи сомневаются в существовании истинных первичных механизмов активного транспорта неэлектролитов. клетки получают большие преимущества, если в качестве источника энергии могут использовать градиент электрохимического потенциала ионов. Однако при рассмотрении механизмов сопряжения потоков ионов и неэлектролитов (нейтральных молекул) необхоцимо помнить, что если выделяемые из клетки ионы (Н+ или Nа+) способствуют транспорту углеволов, аминокислот, сахаров и др. веществ, то для каждой такой системы требуется отдельный переносчик, узнающий специфический субстрат.
Энергетическое сопряжение селективной диффузии с каким-либо термодинамическим градиентом, создаваемым за счет расхода метаболической энергии придает пассивной (облегченной) диффузии все черты активного транспорта. Поэтому между облегченной диффузией и активным транспортом нет непроходимой границы: в зависимости от наличия или отсутствия энергетического сопряжения один и тот же механизм транспорта веществ может иметь черты как активного, так и пассивного.
В переносе веществ через мембраны принимают участие редокс-цепи мембран, т. е. окислительно-восстановительные реакции (например, ОВ дыхательной цепи). Исходным звеном РЦ выступают восстановленные пиридиннуклеотиды, а конечным акцептором электронов является О2.
Например, имеется множество данных о существовании тесного сопряжения между процессом окисления D-лактата и транспортом сахаров, аминокислот и т. д.
К субстратам, которые могут с той или иной эффективностью использоваться в РЦ, относятся также α-глицерофосфат, значительно реже L-лактат, DL- α-оксибутират и др.
По данному механизму транспортируются такие сахара, как галактоза, арабиноза, глюкоза-б-фосфат, глюконат и глюкуронат, большинство прироцных аминокислот, за исключением глутамина (и, возможно, аспарагина)‚ аргинина, метионина и орнитина.
B теории транспорта с участием ОВ систем имеются свои проблемы, связанные, в частности, с тем, что окисление разных транспортируемых веществ должно идти разными путями. С другой стороны, многие факты, рассматриваемые как аргументы в пользу OB транспорта, можно объяснить в рамках другого механизма (например, протон-движущей силы).
