- •Вопросы по «Ксенобиологии»
- •Особенности биотрансформации, поступления и выведения кс у разных организмов.
- •Общие представления об избирательном действии кс. Определение понятия избирательности. Роль физико-химических свойств кс в процессах избирательности.
- •Тестирование биологической активности кс. Стандартизация и подбор тест-систем. Специфические и неспецифические модели (тест-объекты).
- •Процессы метаболического превращения кс
- •8. Принципы организации системы тестирования биологической активности ксенобиотиков. Биологический эпиморфизм. Основные цели биотестирования.
- •9. Биоаккумулирование ксенобиотиков. Коэффициент накопления. Одно- и многоразовые дозы.
- •Многоячеечные системы
- •10. Характеристика факторов, влияющих на биоаккумулирование ксенобиотиков. Трофические цепи и экологические пирамиды.
- •11. Характеристика вредного влияния ксенобиотиков на экосистемы: критерии вредного влияния, последствия и формы, зависимость от времени.
- •12. Разнообразие видов биологической активности, причины ее обуславливаю-щие. Системы классификации биологического действия ксенобиотиков.
- •13.Система оценки первичной безопасности ксенобиотиков: характеристика тест-объектов и тест-реакций.
- •Примерный перечень тест-объектов и тест-реакций, используемых в системе первичной оценки безопасности ксенобиотиков
- •14. Экологический мониторинг среды. Биотесты и биоиндикаторы. Использование приемов биотестирования в системе экологического мониторинга.
- •15.Простая и облегченная диффузия ксенобиотиков через биологические мембраны, их отличительные черты.
- •Облегченная диффузия в отличие от простой, может ингибироваться некоторыми соединениями (иногда в весьма малых концентрациях), которые блокируют переносчик.
- •16.Влияние физиологических, генетических и факторов окружающей среды на биотрансформацию ксенобиотиков.
- •17.Основные пути поступления и выведения гидрофильных и гидрофобных ксенобиотиков живыми организмами.
- •18.Характеристика основных процессов поведения ксенобиотиков в экосистемах. Роль адсорбции и перемещения.
- •19.Экологическая опасность процессов разрушения ксенобиотиков в биоценозах.
- •20. Реакции метаболического окисления органическихксенобиотиков, основныетипы и ферменты.
- •21. Общая схема и основные реакции конъюгации в живых системах. Ферменты,катализирующие эти реакции.
- •Антагонизм, аддитивность и синергизм биологического действия кс. Примеры синергизма и схема антагонистических взаимодействий.
- •23.Образование хелатных комплексов. Характеристика лиганд (хелатирующих агентов). Сродство, коэффициент устойчивости.
- •24.Концепция рецепторов. Критерии отнесения молекулы к рецептору. Регуляция внутриклеточных процессов с участием вторичных мессенджеров.
- •25.Амфифильные кс, их классификация (на примере пав). Характеристика этапов их взаимодействия с биологическими мембранами, характер изменения селективности мембраны.
- •26. Роль физико-химических факторов в превращениях ксенобиотиков в окружающей среде
- •1.Фотохимические превращения.
- •2.Окислительно-восстановительные превращения.
- •3.Гидролиз.
- •4.Конъюгация ксенобиотика
- •27.Химиобиологические закономерности кс и подходы, используемые для их установления.
- •28.Понятия токсичности и опасности кс для живых систем. Яды и токсины. Приемы классификации.
- •29 Реакции метаболического восстановления и гидролиза органических ксенобиотиков, основные типы и ферменты.
- •1)Восстановление альдегидов и кетонов в спирты под действием алкогольдегидрогеназ.
- •4) Немикросомное метаболическое восстановление:
- •1)Гидролиз эфиров карбоновых кислот
- •2) Гидролиз амидов, гидразидов и нитрилов
- •3) Гидролиз фосфорорганических веществ
- •30) Активный транспорт ксенобиотиков через биологические мембраны: определение и характеристика основных механизмов.
- •31) Характеристика процессов адсорбции ксенобиотиков. Изотерма Лэнгмюра.
- •32) Экологическая и токсикологическая характеристика оксидов азота, серы и фторсодержащих углеводородов
- •33. Экологическая и токсикологическая характеристика тяжелых металлов
- •34) Экологическая и токсикологическая характеристика пестицидов, удобрений и биогенных элементов
- •Экологическая и токсикологическая характеристика органических ксенобиотиков: полихлорбифенилы, нефть и нефтепродукты, поверхностно-активные вещества.
- •Виды мембранотропных эффектов. Типы мембранотропности кс.
- •Описание процессов связывания молекул кс с активными сайтами биологических мембран в отсутствии диффузионных ограничений.
- •Модели биофазы и Хилла, их использование для описания закономерностей взаимодействия веществ с активными центрами биологических мембран.
- •Пиноцитоз и фагоцитоз кс. Основные этапы.
- •Пассивный транспорт кс. Общие закономерности, виды пассивного транспорта. Движущие силы пассивного транспорта.
- •Масштабы химического загрязнения биосферы. Основные типы и причины роста глобального химического загрязнения.
- •1) Газообразные вещества:
- •2) Тяжелые металлы
- •4) Органические соединения.
- •Связь процессов ионизации молекул кс с их биологической активностью
- •Кс, обладающие большей биологической активностью в ионизированном состоянии.
- •2)Кс, обладающие большей биологической активностью в неионизированном состоянии.
- •3) Кс, проявляющие биологическое действие в виде ионов и неионизированных молекул.
- •44. Поверхностные явления в системах воздух-вода, масло (липид) - вода. Классификация поверхностно-активных веществ. Мицеллообразование пав. Виды мицелл.
- •Развитие биологической реакции на действие эффектора. Многоканальная система передачи сигнала.
- •Экологическая и токсикологическая характеристика моно-, диоксида углерода и озона
- •Основные типы химических связей и их роль в процессах связывания эффектора с мембранактивными сайтами (рецепторами).
- •Ионизация, ее природа. Константа и степень ионизации молекул кс.
- •Периоды и этапы формирования представлений о биологической активности химических соединений.
- •Роль природы превращений и процессов перемещения кс для функционального состояния экосистем.
- •Накопление и распределение как один из механизмов избирательного действия кс. Цитологический механизм избирательного действия.
- •Биохимический механизм избирательного действия кс для различных организмов.
- •Удаление или маскировка как один из механизмов биологического действия хелатирующих агентов. Характеристика антидотов.
- •1. Аденилциклазные и ионизитодфосфатные пути передачи внутриклеточного сигнала
- •Влияние наноматериалов на среду
- •Наноматериалы и примеры их токсическогр действия
25.Амфифильные кс, их классификация (на примере пав). Характеристика этапов их взаимодействия с биологическими мембранами, характер изменения селективности мембраны.
Короткодействующие ван-дер-ваальсовы силы обеспечивают взаимное притяжение всех молекул, находящихся в контакте друг с другом. Наличие этих сил в жидкостях становится очевидным у поверхности. В объеме жидкости они действуют во всех направлениях с одинаковой интенсивностью, тогда как на границе раздела воздух-вода молекулы испытывают ничтожное воздействие газовой фазы и, следовательно, притяжение их жидкостью (водой) почти не имеет противодействия. расположенные на поверхности молекулы втягиваются внутрь жидкой фазы, и поверхность приобретает конфигурацию с минимально возможной площадью - именно этим и объясняется сферическая форма капель жидкости и пузырьков газа .
Между молекулами растворителя, находящегося в поверхностном слое и внутри основного объема раствора, происходит постоянный обмен молекулами растворителя.
Граница раздела жидкость жидкость (т. е. поверхность между двумя несмешивающимися жидкостями) по свойствам подобна границе раздела воздух-вода, за тем лишь существенным исключением, что разница в силах притяжения каждой из жидкостей, действующих на молекулы в поверхностном слое, в этой ситуации значительно меньше. Во многих случаях поверхностное натяжение у границы жидкость- жидкость почти не отличается от разности величин поверхностного натяжения каждой из жидкостей на ее границе с воздухом.
Амфифильные вещества стремятся сконцентрироваться на границах раздела несмешивающихся жидкостей. Молекулы этих веществ обычно состоят из длинных углеводородных цепей, связанных с короткой полярной «головкой». В большинстве случаев полярность «головки» обусловлена наличием атомов азота или кислорода, не обобществленные пары электронов которых образуют водородные связи с молекулами воды. С другой стороны, для попадания в воду углеводородная цепь должна разорвать водородные связи между молекулами воды, которые энергически препятствует этому разрыву. Поэтому амфифильные вещества, используя минимум энергии, располагаются на границе раздела масло-вода таким образом, что гидрофильная «головка» находится в воде, а липофильные углеводородные цепи размещаются в масле, взаимодействуя с подобными себе цепями растворителя
Накопление амфифильного вещества на границе раздела прекращается сразу же после того, как на ней образуется мономолекулярный слой этого вещества.
Разбавленные водные растворы амфифильных веществ имеют обычные физические свойства. Однако при определенной высокой концентрации (характерной для каждого вещества) наступает резкое изменение поверхностного натяжения, осмотического давления и электропроводности, обусловленное появлением новой диспергированной фазы, образованной агрегатами, называемыми мицеллами. Обычно они имеют почти сферическую форму, т. к. вследствие взаимодействия с окружающей их водой гидрофильные группы вещества располагаются на поверхности сферы, а липофильные углеводородные цепи - внутри ее. Минимальная концентрация вещества, при которой возможно образование мицелл, называется критической мицеллярной концентрацией.
Мицеллы - это агрегаты, состоящие из множества молекул, они термодинамически стабильны и не изменяются до тех пор, пока под действием внешних факторов не сместится равновесие, в котором находилась система. Устойчивость мицелл характеризуется скоростью диссоциации, т. е. средним временем пребывания молекул в мицелле.
представителями амфифильных КС являются поверхностно-активные вещества (ПАВ). По характеру диссоциации все ПАВ делятся на:
- анионные, функциональные группы, молекулы которых в результате ионизации в растворе образуют отрицательно заряженные ионы, обусловливающие поверхностную активность;
- катионные ПАВ, функциональные группы молекул которых в результате ионизации в растворе образуют положительно заряженные ионы, обусловливающие поверхностную активность;
- неионогенные, практически не образующие в водном растворе ионов;
- амфолитные ПАВ, образующие в водном растворе в зависимости от условий (pH, растворимость и др.) катионные или анионные соединения.
При обработке клеток поэтапно увеличивающейся концентрацией детергента ПАВ выявлены четыре различные стадии:
При низких концентрациях молекулы детергента связываются с мембранами, посредством внедрения во внешнюю фазу липидного бислоя без существенного изменения его структуры.
При повышении концентрации мономеров до определенной величины количество молекул детергента становится достаточным для дестабилизации мембраны. ПАВ, встраиваясь в мембрану, могут образовывать поры, размеры и физико-химические свойства которых зависят от типа и концентрации детергента в растворе. В этих случаях ПАВ действуют подобно клину, который разрушает естественную ориентацию липидных бислоев в мембране. В зависимости от вида ПАВ эти поры деформируются в виде связанных каналов или в виде выемок на поверхности мембраны. В ряде случаев при значительных концентрациях детергента образующиеся в мембране поры имеют очень крупные размеры, через них могут проходить сахара и макромолекулы.
При еще больших концентрациях вся мембрана перемешивается с молекулами детергента, что приводит к фазовому переходу - мембрана распадается на смесь мицелл, содержащих комплексы детергент-липид или детергент—липид-протеин.(диссоциация мембраны на смесь комплексов)
(высвобождение из комплексов чистых белков ).При последующем увеличении концентрации ПАВ отношение липид-белок уменьшается до тех пор, пока не происходит полное разделение фракций белков и липидов.
мембрана обладает выраженной селективностью по отношению к различным веществам; их коэффициенты проницаемости могут различаться на порядки. Это результат того, что молекулярные и надмолекулярные структуры мембраны упорядочены особенным образом. всякие нарушения этой упорядоченности, наступающие при внедрении в мембрану уже сравнительно незначительных количеств детергента, немедленно сказываются на показателях селективности. Пока концентрация ПАВ в мембране относительно мала, большая часть связывающихся с мембраной молекул «разрыхляет» удаленные друг от друга участки мембраны и каждая из них действует как бы независимо. Поэтому наступающее снижение селективности примерно пропорционально числу связанных молекул и является суммой отдельных вкладов каждой из них. Но по мере роста концентрации ПАВ молекулы располагаются все плотнее, так что присутствие одной из них усиливает разрушающий эффект другой. Наконец, образуя большие скопления, приводящие в конечном счете к появлению пор, молекулы ПАВ, связанные с мембраной, еще более резко снижают ее селективность В самом деле, какая селективность у решета с большими дырами!
