- •Вопросы по «Ксенобиологии»
- •Особенности биотрансформации, поступления и выведения кс у разных организмов.
- •Общие представления об избирательном действии кс. Определение понятия избирательности. Роль физико-химических свойств кс в процессах избирательности.
- •Тестирование биологической активности кс. Стандартизация и подбор тест-систем. Специфические и неспецифические модели (тест-объекты).
- •Процессы метаболического превращения кс
- •8. Принципы организации системы тестирования биологической активности ксенобиотиков. Биологический эпиморфизм. Основные цели биотестирования.
- •9. Биоаккумулирование ксенобиотиков. Коэффициент накопления. Одно- и многоразовые дозы.
- •Многоячеечные системы
- •10. Характеристика факторов, влияющих на биоаккумулирование ксенобиотиков. Трофические цепи и экологические пирамиды.
- •11. Характеристика вредного влияния ксенобиотиков на экосистемы: критерии вредного влияния, последствия и формы, зависимость от времени.
- •12. Разнообразие видов биологической активности, причины ее обуславливаю-щие. Системы классификации биологического действия ксенобиотиков.
- •13.Система оценки первичной безопасности ксенобиотиков: характеристика тест-объектов и тест-реакций.
- •Примерный перечень тест-объектов и тест-реакций, используемых в системе первичной оценки безопасности ксенобиотиков
- •14. Экологический мониторинг среды. Биотесты и биоиндикаторы. Использование приемов биотестирования в системе экологического мониторинга.
- •15.Простая и облегченная диффузия ксенобиотиков через биологические мембраны, их отличительные черты.
- •Облегченная диффузия в отличие от простой, может ингибироваться некоторыми соединениями (иногда в весьма малых концентрациях), которые блокируют переносчик.
- •16.Влияние физиологических, генетических и факторов окружающей среды на биотрансформацию ксенобиотиков.
- •17.Основные пути поступления и выведения гидрофильных и гидрофобных ксенобиотиков живыми организмами.
- •18.Характеристика основных процессов поведения ксенобиотиков в экосистемах. Роль адсорбции и перемещения.
- •19.Экологическая опасность процессов разрушения ксенобиотиков в биоценозах.
- •20. Реакции метаболического окисления органическихксенобиотиков, основныетипы и ферменты.
- •21. Общая схема и основные реакции конъюгации в живых системах. Ферменты,катализирующие эти реакции.
- •Антагонизм, аддитивность и синергизм биологического действия кс. Примеры синергизма и схема антагонистических взаимодействий.
- •23.Образование хелатных комплексов. Характеристика лиганд (хелатирующих агентов). Сродство, коэффициент устойчивости.
- •24.Концепция рецепторов. Критерии отнесения молекулы к рецептору. Регуляция внутриклеточных процессов с участием вторичных мессенджеров.
- •25.Амфифильные кс, их классификация (на примере пав). Характеристика этапов их взаимодействия с биологическими мембранами, характер изменения селективности мембраны.
- •26. Роль физико-химических факторов в превращениях ксенобиотиков в окружающей среде
- •1.Фотохимические превращения.
- •2.Окислительно-восстановительные превращения.
- •3.Гидролиз.
- •4.Конъюгация ксенобиотика
- •27.Химиобиологические закономерности кс и подходы, используемые для их установления.
- •28.Понятия токсичности и опасности кс для живых систем. Яды и токсины. Приемы классификации.
- •29 Реакции метаболического восстановления и гидролиза органических ксенобиотиков, основные типы и ферменты.
- •1)Восстановление альдегидов и кетонов в спирты под действием алкогольдегидрогеназ.
- •4) Немикросомное метаболическое восстановление:
- •1)Гидролиз эфиров карбоновых кислот
- •2) Гидролиз амидов, гидразидов и нитрилов
- •3) Гидролиз фосфорорганических веществ
- •30) Активный транспорт ксенобиотиков через биологические мембраны: определение и характеристика основных механизмов.
- •31) Характеристика процессов адсорбции ксенобиотиков. Изотерма Лэнгмюра.
- •32) Экологическая и токсикологическая характеристика оксидов азота, серы и фторсодержащих углеводородов
- •33. Экологическая и токсикологическая характеристика тяжелых металлов
- •34) Экологическая и токсикологическая характеристика пестицидов, удобрений и биогенных элементов
- •Экологическая и токсикологическая характеристика органических ксенобиотиков: полихлорбифенилы, нефть и нефтепродукты, поверхностно-активные вещества.
- •Виды мембранотропных эффектов. Типы мембранотропности кс.
- •Описание процессов связывания молекул кс с активными сайтами биологических мембран в отсутствии диффузионных ограничений.
- •Модели биофазы и Хилла, их использование для описания закономерностей взаимодействия веществ с активными центрами биологических мембран.
- •Пиноцитоз и фагоцитоз кс. Основные этапы.
- •Пассивный транспорт кс. Общие закономерности, виды пассивного транспорта. Движущие силы пассивного транспорта.
- •Масштабы химического загрязнения биосферы. Основные типы и причины роста глобального химического загрязнения.
- •1) Газообразные вещества:
- •2) Тяжелые металлы
- •4) Органические соединения.
- •Связь процессов ионизации молекул кс с их биологической активностью
- •Кс, обладающие большей биологической активностью в ионизированном состоянии.
- •2)Кс, обладающие большей биологической активностью в неионизированном состоянии.
- •3) Кс, проявляющие биологическое действие в виде ионов и неионизированных молекул.
- •44. Поверхностные явления в системах воздух-вода, масло (липид) - вода. Классификация поверхностно-активных веществ. Мицеллообразование пав. Виды мицелл.
- •Развитие биологической реакции на действие эффектора. Многоканальная система передачи сигнала.
- •Экологическая и токсикологическая характеристика моно-, диоксида углерода и озона
- •Основные типы химических связей и их роль в процессах связывания эффектора с мембранактивными сайтами (рецепторами).
- •Ионизация, ее природа. Константа и степень ионизации молекул кс.
- •Периоды и этапы формирования представлений о биологической активности химических соединений.
- •Роль природы превращений и процессов перемещения кс для функционального состояния экосистем.
- •Накопление и распределение как один из механизмов избирательного действия кс. Цитологический механизм избирательного действия.
- •Биохимический механизм избирательного действия кс для различных организмов.
- •Удаление или маскировка как один из механизмов биологического действия хелатирующих агентов. Характеристика антидотов.
- •1. Аденилциклазные и ионизитодфосфатные пути передачи внутриклеточного сигнала
- •Влияние наноматериалов на среду
- •Наноматериалы и примеры их токсическогр действия
Антагонизм, аддитивность и синергизм биологического действия кс. Примеры синергизма и схема антагонистических взаимодействий.
Существуют три механизма развития биореакции под действием двух или нескольких различных КБ: аддитивность, синергизм, антагонизм.
Аддитивность – отсутсвие влияния одного КБ на характер действия другого.
Синергизм – усиление биответа при совместном действии КБ-ков по сравнению с эффектами, вызываемыми каждым в-вом в отдельности.
Антагонизм – ослабление или подавление биоэффекта при совместном действии по сравнению с влиянием отдельных агентов.
По
месту воздействия на цепь событий,
начинающихся с применением агониста и
заканчивающихся наблюдаемым биоэффектом,
антагонисты могут быть разделены на
несколько классов.
Типы антагонистического действия КС:
1)Химический
антагонизм (или ант-зм через
нейтрализацию) проявляется при
непосредственном взаимодействии
антагониста на агонист, приводящим к
инактивации последнего. Представляется
в виде обратимой биомолекулярной реакции
образования неактивного комплекса Е.
с константой диссоциации
,
где СА, СВ, СЕ – конц.
агониста, антагониста и продукта реакции
соответственно.
Реакция нейтрализации антагониста может оказаться необратимой (например, используемые препараты содержат ферменты, осуществляющие деградацию агониста).
2)Конкурентный ант-зм – антагонист взаимодействует с теми же сайтами, что и агонист, но в отличие от последнего антагонист не вызывает биореакции.
Выражение для концентрации агонист-рецепторных комплексов (ZA) в условиях равновесия впервые получено Гаддумом:
где Q - наличие мест связывания; СА, Св - концентрации эффектора; КА и Кв - константы диссоциации комплексов агониста и антагониста соответственно.
Важным частным случаем взаимодействия двух лигандов с одним типом рецепторов являются конкурентные отношения между частичным и полным агонистами. Пусть лиганд А2 так же, как и агонист А1, способен вызывать определенную биологическую реакцию, но обладает более низкой внутренней активностью, т.е. равные концентрации лиганд-рецепторных комплексов ZA1 и ZA2 вызывают неравные реакции: р (ZA1) > р (ZA2). Очевидно, что образование дополнительных комплексов ZA2 усиливает реакцию при относительно низких концентрациях агониста А1.
Однако при высоких концентрациях полного агониста А1, реакция снижается вследствие вытеснения А1 с части мест связывания менее эффективным агонистом А2. Таким образом, частичный агонист проявляет во взаимодействии с полным агонистом конкурентный дуализм: усиливает влияние низких концентраций полного агониста, а высоких - ослабляет.
3)Неконкурентный ант-зм реализуется по механизму, аналогичному аллостерическим эффектам при ферментативном катализе. Взаимодействие неконкурентного антагониста с собственными рецепторами не приводит к независимому биоэффекту, а снижает эффект при образовании комплекса агонист-рецептор. Ант-зм, приводящий к уменьшению внутренней активности агониста называют метакоидным.Возможен и другой тип неконкурентных отношений, при котором занятие антагонистом неконкурентного центра (рецептора антагониста) вызывает некоторые изменения рецептора агониста, приводящие к снижению его сродства к агонисту. Такой антагонизм называют метаффиноидным.
4)Функциональный и физический ант-зм. Функциональный антагонизм характеризуется взаимодействием двух агентов (агонист и антагонист) с независимыми рецепторными системами, причем вызывается противоположное влияние в одной и той же эффекторной системе.
Совершенно сходным образом определяется понятие физического антагонизма, который вызывается противоположным физиологическим действием эффекторов, активирующих полностью независимые рецептор-эффекторные системы.
Пример первого: антагонизм между действием ацетилхолина и норадреналина на гладкую мускулатуру кишечника; второго - влияние на кровяное давление вазодиляторов и лекарств, стимулирующих деятельность сердца (в случае рассмотрения сердечно-сосудистой системы как единой эффекторной системы).
Например, при различных сочетаниях концентраций вазадилитатора и сердечного стимулятора может быть как понижение, так и повышение давления крови. Подобная способность агониста изменять знак наблюдаемого эффекта, указывающая на относительную независимость двух рецептор-эффекторных систем, более характерна для физического антагонизма. С другой стороны, в случае функционального антагонизма считают, что эффект, противоположный наблюдаемому (например, сокращение полностью расслабленной мышцы), невозможен.
Функциональный и физический антагонизмы могут представлены в виде схемы:
где R1 и R2 - рецепторы агониста и антагониста; рА и рв - результатирующие субэффекты в рецептор-эффекторных цепях А и В; рАВ - первый субэффект, величина которого зависит от стимула в обоих цепях; рав - наблюдаемый эффект.
5)Бесконкурентный ант-зм – инактивация комплекса агонист-рецептор лигандом, не способным образовывать комплекс с рецептором, не занятым агонистом.Бесконкурентный антагонизм, таким образом, предполагает наличие двух процессов.
Бесконкурентный антагонист в равной мере снижает количество рецепторов, способных образовывать эффективный комплекс с агонистом (т е. в отсутствие резерва рецепторов уменьшает максимально достижимую реакцию), и снижает константу диссоциации этого комплекса (т. е. увеличивает сродство агониста к рецепторам, оказывая действие, противоположное конкурентному антагонизму).
Взаимодействие бесконкурентного антагониста с агонист-рецепторным комплексом представляется возможным лишь в том случае, когда агонист и антагонист обладают сродством к различным функциональным группам рецептора. Убедительных доводов в пользу существования этого типа антагонизма пока не получено.
6)Смешанный ант-зм представляет собой более общую схему взаимодействия агониста и антагониста с рецептором, допускающую комплексообразование рецепторов с обоими лигандами, а также образование тройного комплекса:
Смешанный антагонизм эквивалентен действию смеси конкурентного и бесконкурентного антагонистов в равных концентрациях. Выражение для концентрации комплексов (ZA) имеет вид:
низкое сродство антагониста к активному комплексу (кв2 > кв1) преобладают признаки конкурентного антагонизма, а низкое сродство антагониста к свободным рецепторам (кв2 < кв1) способствует проявлению бесконкурентного антагонизма.
Примеры канцерогенного синергизма: действие нитрозаминов с полихлорированнымибифенилами (ПХБ), бензапирена с ртутью и др. Согласно имеющимся данным не существует даже очень малых доз КБ, которые были бы не способны индуцировать рак из-за эффекта синергизма с другими соединениями.
