Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_po_fizike.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.85 Mб
Скачать

59. Законы электролиза.

1-й закон электролиза: количество вещества , выде-ляющегося на электроде,прямо пропорционально электрич. заряду ,прошедшему через электролит: (16.2). Коэффициен т пропорциональности , численно равный массе в-ва, выделившегося при прохождении через электролит ед-цы электрического заряда, называется электрохимическим эквивалентом вещества. При пропускании через электролит постоянного тока в течении с: и .(16.3).

2-й з-н электролиза: электрохимические эквиваленты элементов прямо пропорциональны их химическим эквивалентам: , (16.4); где отношение атомного веса элемента к его валентности называется химическим эквивалентом. Кол-во в-ва, масса которого, выраженная в гр, равна его хим. эквиваленту, называется грамм-эквивалентом. Величина называется числом Фарадея. Число Фарадея равно эл. заряду, который нужно пропустить через электролит, для выделения на электроде 1 грамм-эквивалента любого в-ва: к/г. экв к/г. Экв. Объединенный закон Фарадея формулируется следующим образом: или , (16.5)т.е. кол-во в-ва, выделяющегося на электроде пропорционально постоянному току , времени протекания , хим. эквиваленту ( - атомный вес элемента, - его валентность). Плотность тока в жидкостях равна сумме плотностей токов положительных и отрицательных ионов: .Зависимость плотности тока в жидкостях от напряженности электрического поля имеет вид:

, (16.6); - число Фарадея, 1/моль – число Авогадро, - валентность «+» ионов в растворе, - число «+» ионов в ед-це объема электролита, и подвижности соответственно «+» и «-» ионов, т.е. средние скорости движения этих ионов под действием электрического поля, напряженность которого равна единице. Формула (16.6) выражает закон Ома для плотности тока в электролитах. Удельное сопротивление электролита определяется:

(16.7). Если молекула электролита диссоциируетна положительных и отрицательных ионов, то , , ; - коэффициент диссоциации, - концентрация электролита. В этом случае: или (16.8);где - эквивалентная концентрация раствора [кгэкв/м3]. При повышении температуры возрастает подвижность ионов и увеличивается электропроводимость. В биологических мембранах разность потенциалов , образующаяся по разные стороны мембраны получила название мембранного потенциала. Теоретически максимальное значение мембранного потенциала описывается уравнением Нернста: , (16.9); R – газовая постоянная, Т – температура, Z –валентность ионов, F – число Фарадея, с1, с2 - концентрация ионов по обе стороны от мембраны.

Мембранный потенциал зависит от температуры и концентрационного градиента ионов, диффундирующих через мембрану.

60. электрические явления в биологических тканях. Био. ткани и органы яв-ся довольно разнород-ными образованиями с различными эл. сопротивлениями, кот. могут изменяться под действием эл. тока. Электропро-водимость отдельных участков организма, находящихся между электродами, наложенными непосредственно на поверхность тела, существенно зависит от сопротивления кожи и подкожных слоев. Сопротивление кожи, в свою очередь, определяется ее состоянием: толщиной, воз-растом, влажностью. Электропроводимость тканей и орга-нов зависит от их функционального состояния и, следова-тельно, может быть использована как диагностический показатель. Напр, при воспалении, когда клетки набухают, ↓ сечение межкл-ых соединений и ↓ эл. Сопротивление и т.д.

Удельные сопротивления тканей и жидкостей организма:

Ткань

Спинномозговая жидкость

0,55

Кровь

1,66

Мышцы

2

Ткань мозговая и нервная

14,3

Ткань жировая

33,3

Кожа сухая

105

Кость без надкостницы

107

Биоэлектрич. явления в организме в большинстве случаев связаны с био-ми мембранами, кот. представляют собой тонкие диэлектрические пленки, разделяющие р-ры элек-тролитов разного состава. В силу того, что мембраны в раз-ной степени проницаемы для катионов и анионов, на них возникает так называемая диффузионная разность потенциалов (рис. 16.1).

Рис.16.1 Рис.16.3

Напр. из р-ра с высок. Концентрац. (KCl)2 идет диффузия катионов в р-р с меньшей концентрацией (KCl)1, и обратно. В результате справа возникает избыточный «-» заряд, слева – «+». Они создают поле, кот. тормозит переход кати-онов справа – налево и ускоряет их обратный переход. Поле достигает такой величины, когда противоположные потоки уравниваются. Т обр. на мембране устанавливается стационарная разность потенциалов, кот. поддерживается за счет неравновесного распреде-ления концентраций элек-тролитов. Обычно в кл. она составляет примерно 0,1 В. При толщине мембран порядка 10 нм эта разность потенциалов создает очень большую напряженность поля, которая достигает 200 кВ /cм. Такие значения величины напряжен-ности поля оказывают значительное воздействие на пове-дение молекул, встроенных в мембраны. Это приводит к изменению эффективности регуляции многих био-х про-цессов, происходящих в кл.. Тк. организма проводят не только постоянный, но и перемен-ный эл. ток. Био-е мемб-раны и весь организм обладают емкостными свойствами. В связи с этим импеданс тк. орга-низма определяется только омическим и емкостным сопротивлениями. Налич. в био-х системах емкостных эл-о подтверждается тем, что сила тока опережает по фазе приложенное напряжение.

Некоторые значения угла сдвига фаз, полученные при частоте 1 кГц для разных биологических объектов:

Ткань

, град

Кожа человека, лягушки

55

Нерв лягушки

64

Мышцы кролика

65

Омические и емкостные свойства био-х тканей можно моделировать, используя эквивалентные эл. схемы. Наиболее удачна эквивалентная схема: Рис. 16.2. При и сопротивление схемы можно найти как . Частотная зависимость импеданса позволяет оценить жизнеспособность тк. организма, что важно знать для пересадки (трансплантации) тк. и органов. Это можно проиллюстрировать графически (рис.16.3). Кривая 1 нарисована для нормальной здоровой тк., 2 – для мертвой тк. убитой кипячением в воде. В мертвой ткани разрушены мембраны клетки, и тк. обладает лишь омическим сопро-тивлением. Различия в частотных зависимостях импеданса получается и в случаях здоровой и больной тк. О емкостных свойствах тк. также могут давать информацию и зависи-мость узла сдвига фаз между током и напряжением. Импе-данс тканей и органов зависит также и от их физиологич. состояния. Диагностический метод, основанный на регистрации изменения импеданса тк. в процессе сердечной деятельности, называют реографией (импеданс-плетизмографией). Используя указанный метод, получают реограмму головного мозга (реоэнцефалограмма), сердца (реокардиограмма), легких, печени, конечностей. Измерения обычно проводят на частоте 30кГц.

55. Колебательный контур. КОЛЕБАТЕЛЬНЫЙ КОНТУР - электрич. цепь, содержа-щая индуктивность L, ёмкость Си сопротивление R, в к-рой могут возбуждаться электрич. колебания (рис. 1).К. к.- электрич. осциллятор, один из осн. элементов радиотехн. систем. Различают линейные и нелинейные К. к. В линей-ном К. к. его параметры L, С и Я не зависят от интенсивно-сти колебаний и период колебаний не зависит от ампли-туды (изохронность колебаний). При отсутствии потерь (R=0) в линейном К. к. происходят свободныегармонические колебания с частотой:w0 = 1/  (ф-ла Томп-сона). Электрич. энергия колебаний сосредоточивается в ёмкости: Wэ = a2/2C,а магн.-в катушк индуктивн.ости: Wм =L q’2/2. Периодически с периодом π/w  происходит преобразова-ние эл. энергии в магн. а затем обратно так что полная энергия системыW (t) =W э (t)+Wм (t)=const = W э (t0); где t0- нач.момент зарядки конденсатора, q - заряд на кон-денсаторе. В реальных К. к. из-за наличия потерь при 0<R<2ρ (где ρ=  устанавливаются затухающие колебания с час-тотой: w = и амплитудой, пропорцииональной e-δt, где δ = R/2L - затухание контура. Качество К. к. хар-ся его добротностью Q = ρ/R = w0/2δ.При R > 2ρ в К. к. колебания отсутствуют и происходит апериодич. Процесс разряда конденсатора через катушку индуктивности. При включении в линейный К. к. генератора с переменной эдс: E = E0 cos Ωt  в нём устанавливают-ся вынужденные колебания с частотой Ω. Напр., при последоват. включении эдс амплитуда колебаний напряжения V на конденсаторе, определяемая соотношением: зависит не толь-ко от амплитуды внеш. эдс, но и от её частоты Ω. Зависи-мость амплитуды колебаний в К. к. от Ω наз. резонансной характеристикой контура (рис. 2). При Ω = w0 V  при-нимает макс. значение, в Q раз превышающее амплитуду внеш. силы Е0. Величину ∆Ω = w/Q  наз. полосой пропу-скания К. к. На резонансной характеристике - это область частот вблизи w0, соответствующая значению амплитуды V ≈ 0,7QE0. Резонансные свойства К. к. позволяют выделить из множества колебаний те, частоты которых близки к  w0. Именно это свойство (избирательность) К. к. используется на практике. Линейный К. к. описывается дифференц. ур-ем вида:q’’ + 2Cq’ + w02q = E0 cos Ωt т. е. является (при Е0=0)системой с одной степенью свобо-ды. Незатухающим колебаниям в К. к. без потерь (δ=0, Е0=0) на фазовой плоскости   соответ-ствуют замкнутые интегральные кривые линейного центра (рис. 3) - вложенные друг в друга эллипсы или, в частном случае, окружности. В нелинейном К. к., когда за-ряд на конденсаторе g - нелинейная ф-ция напряжения или индук-тивность катушки L - нелинейная ф-ция тока (напр., в слу-чае конденсатора с сегнетоэлектриком и индуктивности с ферромагн. сердечником), колебания будут негармоничес-кими и незатухающим колебаниям на фазовой плоскости соответствуют замкнутые интегральные кривые, период обращения по к-рым зависит от энергии, запасённой в К. к.; при этом частота колебаний становится зависимой от амп-литуды колебаний. С помощью К. к. часто моделируют бо-лее сложн. физ. системы, напр. резонаторы с одной эфф. степенью свободы.

61. Физические основы электрокардиографии. Живые тк. явл-тся источником эл. потенциалов (биопотенциалов). Регистрация биопотенциалов органов и тканей с диагности-ческой целью получила название электрографии. В практике распространены названия соответствующих диагностических методов: электрокардиография (ЭКГ)- регистрация биопотенциалов, возникающих в сердечной мышце, при ее возбуждении, электромиография - метод регистрации биологической активности мышц; электроэнцефалография (ЭЭГ)- метод регистрации биологической активности мозга. В большинстве случаев биопотенциалы снимаются электродами не непосредственно с органа, а с других тканей, в которых электрические поля этим органом создаются. В клиническом отношении это упрощает процедуру регистрации, делая ее безопасной. Физический подход к выяснению связи между биопотенциалами сердца и их адекватной регистрацией заключается в моделировании источников этих потенциалов. Все сердце в электрическом отношении представляется как некоторый эквивалентный электрический генератор ( рис.16.4). Для потенциала в некоторой точке можно записать (выражение для потенциала электрического поля вне системы зарядов, распространенных в некотором пространстве): (16.9); - расстояние от системы зарядов до т. А с потенциалом ; .-некоторые функции, зависящие от мультиполя, его зарядов и направления на т. А. При больших значения , можно ограничиться дипольным приближением и получить: (16.10); - дипольный момент дипольного электрического генератора. В мультипольном эквивалентном генераторе сердца основной вклад в потенциал на поверхности тела человека вносится его дипольной составляющей. Дипольное представление лежит в основе теории отведения Эйтховена. Согласно ей, сердце представляет собой диполь с дипольным моментом , который поворачивается, изменяя свое положение и точку приложения (изменением положения этого вектора часто пренебрегают) за время сердечного цикла. На рис.16.4 показаны положения вектора и эквипотенциальных линий для момента времени, когда дипольный момент максимален; это соответствует зубцу на электрокардиограмме. В табл.3 приведены значения максимального дипольного момента для человека и некоторых животных, они сопоставляются с массами сердца и тела. В. Эйтховен предложил снимать разность

Объект

Масса сердце

Масса тела

Макс. Дипольн.

момент сердца

Лягушка

0,16г

0,036кг

0,005 мАсм

Крыса

1,10г

0,287кг

0,107 мАсм

Собака

108г

14,2кг

0,163 мАсм

Человек

300г

71,5кг

2,32 мАсм

Лошадь

3060г

419кг

13,0 мАсм

биопотенциалов между вершинами равностороннего треугольника, которые приближенно расположены в правой ПР и левой ЛР руке и левой ноге ЛН (рис.16. 4).

Эл.Оси сердца. На рис схематически изображен этот треугольник. Разность потенциалов, регистрируемых между двумя точками тела, называют отведением. Различает I отведение (правая рука - левая рука), II отведение (правая рука - левая нога) и III отведение (левая рука - левая нога), соответствующие разностям потенциалов: . По Эйнтховену, сердце расположено в центре треугольника. Отведения позволяют определить потенциалы согласно выражению: ,где соотношение значений разности потенциалов определяется отношением проекций электрического момента сердца на стороны треугольника. Т.к. электрический момент диполя- сердца – изменяется со временем, то в отведениях будут получены временные зависимости напряжения, которые и называются электрокардиограммами. ЭКГ не дает представления о пространственной ориентации вектора . Однако для диагностических целей такая информация важна. В связи с этим иногда применяют метод пространственного исследования электрического поля сердца, называемый вектор - кардиограммой. Вектор кардиограмма - геометрическое место точек, соответствующих концу вектора , положение которого изменяется за время сердечного цикла.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]