- •1. Элементы кинематики. Модели в механике. Системы отсчета
- •6. Давление в жидкости и газах. З-н Паскаля.
- •2.Основные законы кинематики. 1,2,3 з-ны Ньютона.
- •7. Закон Архимеда.
- •3.Силы упругости. Закон Гука.
- •8.Уравнение неразрывности.
- •4. Работа и энергия. Мощность.
- •17. Ультразвук и его применение.
- •5. Кинетическая и потенциальная энергия.
- •19. Уравнение Клапейрона-Менделеева.
- •9. Уравнение Бернулли.
- •11. Метод Стокса для определения вязкости.
- •10. Вязкость. Турбулетные и лиманарные течения.
- •27. 1 Начало термодинамики.
- •12. Гармонические колебания и их характеристики.
- •14. Уравнение бегущей волны. Фазовая и групповая скорости.
- •16. Звуковые волны и их характеристики.
- •18. Законы Бойля-Мариота и Гей-Люссака.
- •30. II и III начало термодинамики.
- •20. Основное уравнение молекулярно-кинетической теории.
- •21. Распределение молекул идеального газа по скоростям.
- •22. Распределение Больцмана.
- •23.Теплопроводность.
- •15. Стоячие волны.
- •24.Диффузия. Закон фика
- •25. Вязкость. Закон Ньютона.
- •26. Внутренняя энергия. Закон Больцмана.
- •32. Адиабатический процесс. Уравнение Пуассона.
- •28. Работа при различных изопроцессах.
- •29. Энтропия.
- •31. Уравнение Ван-дер-Ваальса.
- •33. Поверхностное натежение жидкости.
- •48. Работа и мощность тока.
- •37. Фазовые переходы в веществе. Диаграмма состояний.
- •36. Кристаллическое строение твёрдых тел.
- •76. Принцип Паули. Периодическая система.
- •38. Жидкие кристаллы.
- •39. Электростатическое поле. Напряженность поля. Силовые линии.
- •40. Потенциал и разность потенциалов.
- •43. Электрическое смещение. Распределение зарядов по поверхности проводника.
- •77. Гипотеза де Бройля. Эффект Рамзауэра.
- •44. Энергия электростатического поля.
- •46. Электродвижущая сила. Напряжение.
- •49. Закон Джоуля-Ленца.
- •47. Закон Ома. Сопротивление проводников.
- •50. Магнитное поле и его характеристики.
- •51. Закон Био-Савара-Лапласа. Принцип суперпозиции
- •52. Сила Лоренца.
- •53. Магнитное поле в веществе.
- •55. Квазистационарные токи. Метод векторных диаграмм.
- •54. Геомагнитное поле.
- •67. Биологические ткани в поляризованном свете.
- •56. Резонанс напряжений.
- •57. Мощность в цепи переменного тока.
- •59. Законы электролиза.
- •62. Интерференция света.
- •72. Законы фотоэффекта.
- •63. Дифракция света. Принцип Гюйгенса-Френеля.
- •66. Двойное Лучепреломление.
- •64. Дифракция Фрайнгофера на одной щели. Дафракционная решетка.
- •68. Вращение плоскости поляризации.
- •73. Уравнение Эйнштейна для внешнего фотоэффекта.
- •71. Фотоэфект.
- •74. Строение атома.
- •80. Радиоактивное излучение и его виды.
- •79. Рентгенодиагностика.
- •75. Постулаты Бора.
- •78. Рентгеновское излучение и его свойства.
- •69. Дисперсия света. Нормальная и аномальная дисперсия.
- •1. Элементы кинематики. Модели в механике. Системы отсчета.
55. Квазистационарные токи. Метод векторных диаграмм.
Переменный ток является квазистационарным, если мгновенное значение силы такого тока во всех сечениях цепи практически одинаково. Его изменение происходят достаточно медленно, а электромагнитные возмущения распространяются по пути с очень высокой скоростью.
Рис.14.1
Рассмотрим
процессы, происходящие на участке цепи,
содержащем резистор, катошку индуктивности
и конденсатор, к концам когорого
приложено переменное напряжение:
(14.1);
где
-амплитуда
напряжения.
Для
условий квазистационарности ток через
резистор определяется законом Ома:
;
– амплитуда
силы тока.
Для наглядного изображения соотношений между переменными токами и напряжениями используется метод векторных диаграмм. На рис.14.1.б представлена векторная диаграмма амплитудных значений тока и напраяжения на резисторе (сдвиг фаз между и равен 0).
54. Геомагнитное поле.
Действие
магнитного поля на биологические
объекты проявляется на примере
геомагнитных полей. В спектре естественных
электромагнитных полей (ЭМП) условно
можно выделить несколько составляющих:
это постоянное магнитное поле Земли
(геомагнитное поле), электростатическое
поле и переменные электромагнитные
поля в диапазоне частот от
Гц
до
Гц.
Особое внимание при изучении влияния естественных ЭМП на живую природу уделяется геомагнитному полю, как одному из важнейших факторов окружающей среды. Установление наличия у различных живых организмов (пчёлы, голуби, моллюски, человек) биогенного магнетита позволяет сделать заключение о возможности прямой магниторецепции. Изучение магниторецепции у человека дало основание считать, что она представлена как в структурах мозга, так и в надпочечниках.
Величина постоянного геомагнитного поля может изменяться на поверхности Земли от 26 мкТл (в районе Рио-де-Жанейро) до 68 мкТл (вблизи географических полюсов), достигая максимумов в районе магнитных аномалий (Курская аномалия до 190 мкТл). На основное магнитное поле Земли наложено переменное магнитное поле (главным образом, порождённое токами, текущими в ионосфере и магнитосфере), величина которого хотя и не превышает 4-5% главного поля, но информационное влияние на биосферу может быть значительным.
Геомагнитные поля могут оказывать неоднозначное влияние на организм человека. С одной стороны, геомагнитные возмущения рассматриваются как экологический фактор риска: имеются данные, свидетельствующие о связи с ними развития ряда неблагоприятных реакций в организме человека. Так, показано, что геомагнитные возмущения могут оказывать десинхронизирующее влияние на биологические ритмы и другие процессы в организме; могут быть основной действующей причиной для модуляции функционального состояния мозга. Отмечена связь между возникновением геомагнитных возмущений и возрастанием числа клинически тяжелых патологий (инфарктов миокарда и инсультов).
С другой стороны, выявлено, что периодические пульсации геомагнитного поля участвуют в регуляции циркадных, инфрадных, циркасентактных биологических ритмов, а также их взаимоотношений.
В последнее время учёные столкнулись с проблемой гипогеомагнитных полей. Полученные учёными данные свидетельствуют о воздействии на человека гипогеомагнитных полей, которые появляются при работе людей в специализированных экранированных сооружениях. Показано, что в подземных сооружениях метрополитена уровни геомагнитных полей могут быть снижены в 2…5 раз, в жилых и общественных зданиях, выполненных из железобетонных конструкций в 1,3-1,5 раза; на Останкинской телебашне в служебных помещениях в 1,5-2,3 раза, в кабинах скоростных лифтов в 15-19 раз, в кабинах буровых установок и экскаваторов в 1,8-8,5 раза; в салонах легковых автомобилей в 1,5-3 раза и др. Человек попадает в гипогеомагнитные условия и при осуществлении космических полётов, в самолётах, в служебных помещениях и каютах морских и речных судов, на подводных лодках и других военно-технических объектах, в помещениях банков. Человек испытывает дискомфорт, появляется чувство усталости.
При этом следует подчеркнуть, что при магнитных бурях, неблагоприятное воздействие которых на организм субъективно ощущает почти 30% населения, уровень геомагнитного поля изменяется в среднем на десятки-сотни нанотесла, что составляет лишь доли или несколько процентов от его величины. В описанных гипогеомагнитных условиях изменение уровней геомагнитных полей составляет десятки тысяч нанотесла, т. е. на три порядка больше.
