Скачиваний:
11
Добавлен:
23.06.2014
Размер:
252.42 Кб
Скачать
  1. Опишите развитие представлений о свете. Как и кем было показано, что свет есть электромагнитная волна. В каких явлениях проявляются волновые свойства света?

В конце XVIII  в. на основе многовекового опыта и развития представлений   о   свете   возникли    две   теории света:   корпускулярная  (И. Ньютон) и  волновая  (Р. Гук и Х. Гюйгенс).

Согласно корпускулярной теории, свет представляет собой поток частиц (корпускул), испускаемых светящимися телами и летящих по прямолинейным траекториям. Движение световых корпускул Ньютон подчинил сформулированным им законам механики. Так, отражение света понималось аналогично отражению упругого шарика при ударе о плоскость, где также соблюдался закон равенства углов падения и отражения. Преломление света Ньютон объяснил притяжением корпускул преломляющей средой, в результате чего скорость корпускул меняется при переходе из одной среды в другую. Из теории Ньютона следовало постоянство синуса угла падения i1 к синусу угла преломления i2:

,                          (1)

где V - скорость распространения света в среде; с - скорость распространения света в вакууме. Так как n в среде всегда больше единицы, то, по теории Ньютона,   скорость распространения света в среде должна быть всегда больше скорости его распространения в вакууме.

Согласно волновой теории, развитой на основе аналогии оптических и акустических явлений, свет представляет собой упругую волну, распространяющуюся в особой среде, - эфире. Эфир заполняет все пространство, пронизывает все тела и обладает механическими свойствами - упругостью и плотностью. Согласно Гюйгенсу, большая скорость распространения света обусловлена особыми свойствами эфира.

Волновая теория основывается на принципе  Гюйгенса: каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени. Принцип Гюйгенса позволяет анализировать распространение света и вывести законы отражения и преломления. По Гюйгенсу             

.                           (2)

Из сравнения выражений (1) и (2) видно, что выводы по  волновой теории отличны от вывода теории Ньютона. По теории Гюйгенса, v<c, т.е. скорость распространения света в среде должна быть всегда меньше скорости его распространения в вакууме.

Таким образом, к началу XVIII в. существовало два противоположных подхода к объяснению природы света: корпускулярная теория Ньютона и волновая теория Гюйгенса. Обе эти теории объяснили прямолинейное распространение света, законы отражения и преломления. XVIII век стал веком борьбы этих теорий. Экспериментальное доказательство справедливости волновой теории было получено в 1851 г., когда Э. Фуко измерил скорость распространения света в воде и получил значение, соответствующее формуле (2). К концу XIX в. корпускулярная теория была полностью отвергнута и восторжествовала волновая теория. Большая заслуга в этом принадлежит английскому физику Т. Юнгу, исследовавшему явления дифракции и интерференции, и французскому физику О. Френелю, дополнившему принцип Гюйгенса и объяснившему эти явления.

Признанная волновая теория обладала целым рядом недостатков. Например, явления интерференции, дифракции и поляризации могли быть объяснены только в том случае, если световые волны считать поперечными. Теория Гюйгенса не могла объяснить также физической природы наличия разных цветов.

Наука о свете накапливала экспериментальные данные, свидетельствующие о взаимосвязи световых, электрических и магнитных явлений, что позволило Максвеллу в 70-х годах XIX в. создать электромагнитную теорию света, согласно которой

,

где с и V - соответственно скорости распространения света в вакууме и в среде с диэлектрической проницаемостью e и магнитной проницаемостью m. Это соотношение связывает оптические, электрические и магнитные постоянные вещества.

Электромагнитная теория Максвелла и электронная теория Лоренца имели огромные успехи, но вместе с тем были несколько противоречивы, поэтому при их применении встречался ряд затруднений. Обе теории основывались на гипотезе об эфире, только «упругий эфир» был заменен «эфиром электромагнитным» (теория Максвелла) или «неподвижным эфиром» (теория Лоренца). Теория Максвелла не смогла объяснить процессов испускания и поглощения света, фотоэлектрического эффекта, комптоновского рассечения и т.д. Теория Лоренца, в свою очередь, не смогла объяснить многие явления, связанные со взаимодействием света с веществом, в частности, вопрос о распределении энергии по длинам волн при тепловом излучении черного тела.

Перечисленные затруднения и противоречия были представлены благодаря смелой гипотезе (1900 г.) немецкого физика М. Планка, согласно которой излучение и поглощение света происходит  не непрерывно, а дискретно, т.е. определенными порциями  (квантами), энергия которых определяется частотой n:

                                              e0=hn,                        (3)

где  h - постоянная Планка.

Теория Планка не нуждалась в понятии об эфире. Она объясняла тепловое излучение черного тела. Эйнштейн в 1905 г. создал  квантовую теорию  света, согласно которой не только излучение света, но и его распространение  происходит  в   виде    потока  световых  квантов - фотонов, энергия которых определяется соотношением (3), а масса  

                                            .                                    (4)

Квантовые представления о свете хорошо согласуются с законами излучения и поглощения света, взаимодействия света с веществом. Однако как с помощью этих представлений объяснить такие изученные явления, как интерференция, дифракция и поляризация света?

Эти явления легко объясняются на основе волновых представлений. Все многообразие изученных свойств и законов распространения света, его взаимодействие с веществом показывает, что свет имеет сложную природу. Он представляет собой единство противоположных видов движения  -  корпускулярного  и  волнового (электромагнитного). Длительный путь развития привел к современным представлениям о  двойственной корпускулярно-волновой  природе света. Выражения (3) и (4) связывают корпускулярные характеристики излучения - массу и энергию кванта - с волновыми - частотой колебаний и длиной волны. Таким образом, свет представляет собой единство дискретности и непрерывности, что находится в полном соответствии с выводами материалистической диалектики.

  1. В чем сущность второго начало термодинамики? Приведите значения к.п.д. для тепловых станций. На сколько градусов повысится температура воды при падении с плотины Саяно – Шушенсокй ГЭС (высота 222 м), если считать, что 30% потенциальной энергии расходуется на нагревание? В чем суть спора о «тепловой смерти Вселенной»?

Второе начало термодинамики, принцип, устанавливающий необратимость макроскопических процессов, протекающих с конечной скоростью. В отличие от чисто механических (без трения) или электродинамических (без выделения джоулевой теплоты) обратимых процессов, процессы, связанные с теплообменом при конечной разности температур (т. е. текущие с конечной скоростью), с трением, диффузией газов, расширением газов в пустоту, выделением джоулевой теплоты и т.д., необратимы, т. е. могут самопроизвольно протекать только в одном направлении.

  Исторически Второе начало термодинамики возникло из анализа работы тепловых машин. Существует несколько эквивалентных формулировок Второго начала термодинамики. Само название «Второе начало термодинамики» и исторически первая его формулировка (1850) принадлежат Р. Клаузиусу: невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более нагретым. При этом самопроизвольный переход не следует понимать в узком смысле: невозможен не только непосредственный переход, его невозможно осуществить и с помощью машин или приборов без того, чтобы в природе не произошло ещё каких-либо изменений. Иными словами, невозможно провести процесс, единственным следствием которого был бы переход теплоты от более холодного тела к более нагретому. Если бы (в нарушение положения Клаузиуса) такой процесс оказался возможным, то можно было бы, разделив один тепловой резервуар на 2 части и переводя теплоту из одной в другую, получить 2 резервуара с различными температурами. Это позволило бы, в свою очередь, осуществить Карно цикл и получить механическую работу с помощью периодически действующей (т. е. многократно возвращающейся к исходному состоянию) машины за счёт внутренней энергии одного теплового резервуара. Поскольку это невозможно, в природе невозможны процессы, единственным следствием которых был бы подъём груза (т. е. механическая работа), произведённый за счёт охлаждения теплового резервуара (такова формулировка В. н. т., данная У. Томсоном, 1851). Обратно, если бы можно было получить механическую работу за счёт внутренней энергии одного теплового резервуара (в противоречии с В. н. т. по Томсону), то можно было бы нарушить и положение Клаузиуса. Механическую работу, полученную за счёт теплоты от более холодного резервуара, можно было бы использовать для нагревания более тёплого резервуара (например, трением) и тем самым осуществить переход теплоты от холодного тела к нагретому. Обе приведённые формулировки Второго начало термодинамики, являясь эквивалентными, подчёркивают существенное различие в возможности реализации энергии, полученной за счёт внешних источников работы, и энергии беспорядочного (теплового) движения частиц тела.

Возможность использования энергии теплового движения частиц тела (теплового резервуара) для получения механической работы (без изменения состояния других тел) означала бы возможность реализации так называемого вечного двигателя 2-го рода, работа которого не противоречила бы закону сохранения энергии. Так, работа двигателя корабля за счёт охлаждения забортной воды океана — доступного и практически неисчерпаемого резервуара внутренней энергии — не противоречит закону сохранения энергии, но если, кроме охлаждения воды, нигде других изменений нет, то работа такого двигателя противоречит Второму началу термодинамики. В реальном тепловом двигателе процесс превращения теплоты в работу обязательно сопряжён с передачей определённого количества теплоты внешней среде. В результате тепловой резервуар двигателя охлаждается, а более холодная внешняя среда нагревается, что находится в согласии со Вторым началом термодинамики. Следовательно, Второе начало термодинамики можно формулировать и как невозможность вечного двигателя 2-го рода.

Энергетический баланс паросиловой станции с турбиной показан на рис. 1. Он является примерным; к. п. д. паросиловой станции может быть и больше (до 27 %). Потери энергии, которые имеют место при работе паросиловой станции, можно разделить на две части. Часть потерь обусловлена несовершенством конструкции и может быть уменьшена без изменения температуры в котле и в конденсаторе. Например, устроив более совершенную тепловую изоляцию котла, можно уменьшить потери теплоты в котельной. Вторая, значительно большая часть — потеря теплоты, переданной воде, охлаждающей конденсатор, оказывается при заданных температурах в котле и в конденсаторе совершенно неизбежной. Условием работы теплового двигателя является не только получение некоторого количества теплоты от нагревателя, но и передача части этой теплоты холодильнику. Большой научный и технический опыт по устройству тепловых двигателей и глубокие теоретические исследования, касающиеся условий работы тепловых двигателей, установили, что к. п. д. теплового двигателя зависит от разности температур нагревателя и холодильника.

Рис. 1. Примерный энергетический баланс паросиловой станции с турбиной

Чем больше эта разность, тем больший к. п. д. может иметь паросиловая установка (конечно, при условии устранения всех технических несовершенств конструкции, о которых упоминалось выше). Но если разность эта невелика, то даже самая совершенная в техническом смысле машина не может дать значительного к. п. д. Теоретический расчет показывает, что если термодинамическая температура нагревателя равна T1, а холодильника T2, то к. п. д. не может быть больше чем

Так, например, у паровой машины, пар который имеет в котле температуру 100 °С (или 373 К), а в холодильнике 25 °С (или 298 К), к. п. д. не может быть больше (373—298)/373=0,2, т. е. 20 % (практически, вследствие несовершенства устройства, к. п. д. такой установки будет значительно ниже). Таким образом, для улучшения к. п. д. тепловых машин нужно перейти к более высоким температурам в котле, а следовательно, и к более высоким давлениям пара. В отличие от прежних станций, работавших при давлении 12—15 атм. (что соответствует температуре пара 200 °С), на современных паросиловых станциях начали устанавливать котлы на 130 атм. и более (температура около 500 °С).

Вместо увеличения температуры в котле можно было бы понижать температуру в конденсаторе. Однако это оказалось практически неосуществимым. При очень низких давлениях плотность пара очень мала и при большом количестве пара, пропускаемого за одну секунду мощной турбиной, объем турбины и конденсатора при ней должен был бы быть непомерно велик.

Кроме увеличения к. п. д. теплового двигателя, можно пойти по пути использования «тепловых отбросов», т. е. теплоты, отводимой водой, охлаждающей конденсатор.

Рис. 2. Примерный энергетический баланс ТЭЦ

Вместо того чтобы спускать нагретую конденсатором воду в реку или озеро, можно направить ее по трубам водяного отопления или использовать ее для промышленных целей в химической или текстильной промышленности. Можно также производить расширение пара в турбинах только до давления 5—6 атм. Из турбины при этом выходит еще очень горячий пар, могущий служить для ряда промышленных целей.

Станция, использующая отбросы теплоты, снабжает потребителей не только электрической энергией, полученной за счет механической работы, но и теплотой. Она называется теплоэлектроцентралью (ТЭЦ). Примерный энергетический баланс ТЭЦ представлен на рис. 2.

Второе начало термодинамики указывает естественное направление изменения распределения энергии, не зависящее от количества энергии. Идеи Клаузиуса и Кельвина носили описательный характер, но вызвали дискуссии.

Так, Ранкин выдвинул гипотезу реконцентрации энергии: Вселенная окружена особой эфирной оболочкой, обладающей свойствами зеркальной поверхности, и энергия может не рассеиваться, а концентрироваться в каких-то центрах мира, где температура будет повышаться. Возникшая разность температур вновь нарушит тепловое равновесие. В ответ Клаузиус показал, что никакое вогнутое зеркало не может дать температуру выше той, которая была присуща телу. Папа Пий XII считал: «Закон энтропии, открытый Рудольфом Клаузиусом, дал нам уверенность в том, что в изолированной материальной системе в конце концов процессы в макроскопическом масштабе когда-то прекратятся. Эта печальная необходимость свидетельствует о существовании Необходимого Существа». Энгельс расценил эти выводы как доказательство необходимости сотворения мира, как противоречие закону сохранения энергии, если второе начало говорит о качественном уничтожении энергии. Он указывал, что «вопрос будет решен окончательно лишь в том случае, если будет показано, каким образом излученная в мировое пространство теплота может быть снова используемой». Его «Диалектика природы» построена на идее круговорота энергии.

  1. Как соединяются атомы в молекулы? Какова роль энергии и энтропии при образовании молекул? Поясните понятия химических связей и приведите примеры различных связей. Какие химические связи являются определяющими в конденсированных средах?

Атомы в молекулах связываются различными путями, при этом они разделяют между собой электроны или обмениваются ими. Двумя простыми видами химической связи являются ковалентная и ионная.

Ковалентная связь возникает, когда атомы имеют общие электроны. Так, молекула водородного газа состоит из двух атомов водорода, связанных ковалентной связью. Единственный электрон каждого атома водорода вращается вокруг ядер обоих атомов, связывая их воедино.

В случае ионной связи один атом передает электроны другому атому. В результате возникает электрическая сила, связывающая атомы воедино. Как правило, количество положительно заряженных протонов и отрицательно заряженных электронов в атоме одинаково. Их положительные и отрицательные заряды уравновешивают друг друга, и поэтому атом не имеет общего заряда. Однако в атоме, отдающем электроны, создается избыток положительного заряда, а атом, получающий электроны, приобретает общий отрицательный заряд. Такие заряженные атомы называются ионами. Ионы противоположных зарядов притягиваются друг к другу, и именно это электрическое притяжение удерживает атомы вместе при ионной связи. Например, молекула поваренной соли формируется с помощью ионной связи, когда атом натрия передает электрон атому хлора.

Все атомы одного вещества имеют одинаковое количество протонов, но различное количество нейтронов. Так, в углероде ядро большинства атомов содержит шесть нейтронов, но примерно в каждом сотом из них имеется семь нейтронов. Эти различные типы атомов одного и того же элемента называются изотопами. Все изотопы данного элемента обладают одинаковыми химическими свойствами - все они соединяются с другими веществами и образуют одни и те же химические соединения. Но отдельные физические свойства изотопов различаются - например, они имеют разные точки замерзания или кипения.

Говоря о конкретном изотопе того или иного элемента, ученые называют его массовое число. Например, углерод-12 - это обычный природный изотоп углерода. Его атом содержит шесть протонов и шесть нейтронов. Более редкий природный изотоп, в ядре каждого атома которого находится лишний нейтрон, называется углерод-13.