
Контрольная работа_1 / 1-54_Концепции современного естествознания
.doc1. Современный этап научно-технического прогресса – эпоха НТР – это коренное преобразование производительных сил общества на основе превращения науки в ведущий фактор развития общественного производства всей жизни общества. Все что сейчас кажется для нас обычным – самолеты, компьютеры, сотовые телефоны, телевидение, - все это продукты научно-технического прогресса, подготовившего в первой половине ХХв. Современную НТР. Думаю, что об НТР впервые заговорили после создания атомной бомбы. Использование атомной бомбы имело огромный психологический эффект – люди убедились в колоссальных возможностях науки, не только созидательных, но и разрушительных. Государства и частные инвесторы стали ассигновывать на науку огромные средства, начался стремительный рост научно-исследовательских институтов. Научная деятельность превратилась в массовую профессию. А потом человек полетел в космос – это стало следующим этапом НТР. Но символом НТР признаны ЭВМ, в том числе ПК,- принципиально новый вид техники, которому человек со временем придал логически функции. Не мало важно появления радио, телевизоров и сети Интернет. Это сделало возможным связь людей находящихся далеко друг от друга, много полезной информации, развлекательный досуг и т.д. Так же появление и усовершенствование компьютеров облегчило путь к более высоким технологиям. Главные направления НТР – комплексная автоматизация производства, его контроля и управления, открытие и использование новых видов энергии, создание и применение новых материалов. НТР означает перестройку всего технологического базиса и способа производства, начиная с использования материалов и энергетических процессов и кончая системой машин и формами организации и управления, отношением человека к процессам производства. Но не смотря на общие направления НТР, каждая страна имеет свои направления развития науки. К примеру, для голодающих стран выращивают генно-модифицированные продукты, они растут и поспевают во много раз быстрее обычных, а размеры плодов большие. В Японии на первом месте стоит изобретение искусственных интеллектов, в Европе выделяют огромные деньги на опыты в медицине. Там проделывают операции, известные всему миру. Вспомните овечку Долли из Англии. В некоторых странах финансирование направлено на развитие военной техники. То есть ясно видно, что каждая страна ведет свою политику в отношении НТР. Мировоззрение людей так же влияет на развитие НТР. Многих людей волнуют вопрос о существовании пришельцах. Появились уфология и палеовизитология. Когда-то людей волновал вопрос гелио- и геоцентрической картины мира. Тогда же аргумент о том что нас создал Бог по образу и подобию своему, поэтому мы в центре всего, не смог оказать в конечном счете противодействия научным данным.
2. Астероиды - это твердые каменистые тела, которые подобно планетам движутся по околосолнечным эллиптическим орбитам. Но размеры этих тел намного меньше, чем у обычных планет, поэтому их еще называют малыми планетами. Диаметры астероидов находятся в пределах от нескольких десятков метров (условно) до 1000 км (размер наибольшего астероида Цереры). Термин "астероид" (или "звездоподобный") был введен известным астрономом XVIII века Уильямом Гершелем для характеристики вида этих объектов при наблюдениях в телескоп. Даже с помощью самых крупных наземных телескопов невозможно различить видимые диски у наибольших астероидов. Они наблюдаются как точечные источники света, хотя, как и другие планеты, в видимом диапазоне сами ничего не излучают, а лишь отражают падающий солнечный свет. Диаметры некоторых астероидов были измерены с помощью метода "покрытия звезд", в те удачные моменты, когда они оказывались на одном луче зрения с достаточно яркими звездами. В большинстве же случаев их размеры оцениваются с помощью специальных астрофизических измерений и расчетов. Основная масса известных на сегодняшний день астероидов движется между орбитами Марса и Юпитера на расстояниях от Солнца 2,2-3,2 астрономических единиц (далее - а. е.). Всего на сегодняшний день открыто примерно 20000 астероидов, из которых около 10000 зарегистрированы, то есть им присвоены номера или даже имена собственные, а орбиты рассчитаны с большой точностью. Имена собственные астероидам, обычно присваивают их первооткрыватели, но в соответствии с установленными международными правилами. Вначале, когда малых планет было известно еще немного, их имена брали, как и для других планет, из древнегреческой мифологии. Кольцевая область пространства, которую занимают эти тела, называется главным поясом астероидов. При средней линейной орбитальной скорости около 20 км/с астероиды главного пояса затрачивают на один оборот вокруг Солнца от 3 до 9 земных лет в зависимости от удаленности от него. Наклоны плоскостей их орбит по отношению к плоскости эклиптики иногда достигают 70° , но в основном находятся в диапазоне 5-10° . На этом основании все известные астероиды главного пояса делят примерно поровну на плоскую (с наклонами орбит до 8° ) и сферическую подсистемы.
Церера - самый большой астероид, который был обнаружен первым. Он был открыт итальянским астрономом Джузеппе Пиацци 1 января 1801 г. и назван в честь римской богини плодородия. Паллада - второй по величине астероид, обнаруженный также вторым. Это было сделано немецким астрономом Генрихом Ольберсом 28 марта 1802 г. Веста - третий по величине астероид, открытый также Г. Ольберсом в 1807 г. У этого тела имеются наблюдательные признаки наличия базальтовой коры, покрывающей оливиновую мантию, что может быть следствием плавления и дифференциации его вещества. Изображение видимого диска этого астероида было впервые получено в 1995 г. с помощью американского Космического телескопа им. Хаббла, работающего на околоземной орбите.
Среднее расстояние от Солнца до Плутон равно 39,23 а.е. До полного оборота со дня его открытия Плутону осталось 171 земных лет, т.к. открыл сотрудник обсерватории Ловэлла Клайд Томбо в 1930 году. Однако, её существование теоретически предсказал американский астроном Персиваль Ловелл в 1915 году.
3. Энергия — скалярная физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие.Существует довольно много форм энергии, большинство из которых так или иначе используются в энергетике и различных современных технологиях. Но я бы сказала, что энергия – это мера возможности совершить работу. Существует много видов энергии.
Механическая энергия проста в понимании и легка в использовании. Тела могут оказывать друг на друга механическое воздействие. Движущиеся тело может столкнувшись с другими телами вызвать их движение (совершить работу). В этом случае речь идет о кинетической энергии. Сжимая (деформируя) пружину, мы сообщаем ей потенциальную энергию деформации (возможность совершить работу при распрямлении). В повседневной жизни мы наблюдаем непрерывное перетекание энергии из одного вида в другие. Подбросив мяч мы сообщаем ему кинетическую энергию, поднявшись на высоту h он приобретает потенциальную энергию, в момент удара о землю мяч подобно пружине сжимается приобретая потенциальную энергию деформации, и т.д. Все выше перечисленные виды энергии относятся к механической энергии.
Тепловая энергия. Вторым, после механической, видом энергии, которым человек пользуется на протяжении почти всей своей истории является тепловая энергии. Наглядное представление о тепловой энергии человек получает с пеленок: это горячая пища, тепло систем отопления в современной квартире (если его не отключили), или тепло печки в деревенском доме. Что же представляет собой эта энергия с точки зрения физики? Каждое физическое тело состоит из атомов или молекул, в жидкостях и газах они хаотично движутся, чем выше скорость движения, тем большей тепловой энергией обладает тело. В твердом теле подвижность молекул или атомов значительно ниже чем в жидкости, а тем более в газе, молекулы твердого тела только колеблются относительно некоторого среднего положения, чем сильнее эти колебания тем большей тепловой энергией обладает тело. Нагревая тело (сообщая ему тепловую энергию), мы как бы раскачиваем его молекулы и атомы, при достаточно сильном "раскачивании" можно выбить молекулы со своего места и заставить хаотично двигаться. Этот процесс плавления наблюдал каждый, нагревая в руке кусочек льда. Продолжая нагрев мы как бы разгоняем движущиеся молекулы, при достаточном разгоне молекула может выйти за переделы тела. Чем больше нагрев, тем больше молекул могут покинуть тело, в конце концов, передав телу достаточное количество тепловой энергии можно превратить его в газ. Такой процесс испарения протекает кипящем чайнике.
Электрическая энергия. Мельчайшей электрически заряженной частицей является электрон, который в ходит в состав любого атома. Для нейтрального атома суммарный отрицательный заряд электронов равен положительному заряду ядра, а заряд всего атома равен нулю. Если удалить несколько электронов, то сумма зарядов электронов и ядра станет больше нуля. Если добавить лишних то атом приобретет отрицательный заряд. Из физики известно что два противоположно заряженных тела притягиваются. Если на одном теле сосредоточить положительный заряд (удалить с атомов электроны) а на другом отрицательный (добавить электроны), то между ними возникнут силы притяжения, но на больших расстояниях эти силы очень малы. Соединив эти два тела проводником (например металлической проволокой в которой электроны очень подвижны) мы вызовем движение электронов от отрицательно заряженного тела к положительно заряженному телу. Движущиеся электроны могут совершить работу (например накалить нить электролампы) следовательно заряженные тела обладают энергией. В источнике электрической энергии происходит разделение положительных и отрицательных зарядов замыкая электрическую цепь мы, как бы позволяем разделенным зарядам соединится но при этом заставляем их выполнить необходимую нам работу.
Химические источники энергии. Самым первым источником энергии, который человек поставил себе на службу, были обыкновенные дрова для пещерного костра. При горении происходят химические реакции окисления. Самой распространенной и широко используемой, с древних времен и до наших дней, является реакция окисления углерода: углерод в ходящий в состав любого органического топлива (уголь, дерево, нефть, газ), взаимодействуя с кислородом атмосферы образует углекислый газ и выделяется тепловая энергия. Химические реакции могут происходить как с поглощением так и с выделением энергии, сама энергия может быть как тепловой так и электрической. В автомобильном аккумуляторе при работе происходит выделение электрической энергии, при зарядке происходит поглощение электрической энергии. В изолированных системах при движении сохраняется полная энергия системы. Кроме того, для поступательного движения сохраняется импуль, а для вращательного момент импульса. Каждой из двух векторных величин соответствует по три сохраняющися компоненты импульса и момента импульса. Таким образом, при взаимодействиях в изолированных системах имеют место семь сохраняющихся величин.
4. Радиус Земли оказывается слишком малым, чтобы служить базисом для измерения параллактического смещения звезд и для определения расстояний до них. Еще во времена Коперника было ясно, что если Земля действительно перемещается в пространстве, обращаясь вокруг Солнца, то видимые положения звезд на небе должны меняться. Земля за полгода перемещается на величину диаметра своей орбиты. Направления на звезду с двух концов диаметра этой орбиты должны различаться на величину параллактического смещения. Иначе говоря, у звезд должен быть заметен годичный параллакс. Годичным параллаксом звезды называется угол, под которым со звезды видна большая полуось земной орбиты перпендикулярная к лучу зрения. Параллакс звезд не был обнаружен, и Коперник правильно утверждал, что это происходит потому, что звезды слишком далеки от Земли, чтобы существовавшими тогда приборами можно было обнаружить параллактическое смещение звезд при базисе, равном диаметру земной орбиты. Наблюдения положения звезды на небе делаются в моменты, разделенные полугодом. За это время Земля переносит наблюдателя на расстояние, равное диаметру ее орбиты. В настоящее время способ определения годичного параллакса является основным при определении расстояний до звезд. Впервые годичный параллакс звезды был надежно измерен выдающимся русским ученым В. Я. Струве в 1837 г. Он измерил годичный параллакс звезды Веги. Одновременно с этим в других странах измерили параллаксы еще у двух звезд. Одной из них была Альфа (а) Центавра. Она оказалась ближайшей к нам звездой с годичным параллаксом р=0",75. Под таким углом невооруженному глазу видна проволочка толщиной 1мм с расстояния 280 м. Не удивительно, что так долго не могли заметить у звезд подобные столь малые угловые смещения.Расстояние до звезды D = a/sin(p), где а — большая полуось земной орбиты. Если выражать р в секундах дуги, то при малости р D = а/(р"sin1"). Если принять а за единицу, то, зная, что sin1" = 1/206265 получим D=206265/pастрономических единиц. Расстояние до ближайшей звезды а Центавра D=206 265/(3/4) = = 270 000 а. Е. Свет проходит расстояние до а Центавра за 4 года, тогда как от Солнца до Земли он идет только 8 мин, а от Луны 1сек.Расстояния до звезд удобно выражать в парсеках (пс). Парсек— расстояние, с которого большая полуось земной орбиты, перпендикулярная к лучу зрения, видна под углом в 1". Расстояние в парсеках равно обратной величине годичного параллакса, выраженного в секундах дуги. 1 парсек = 3,26 светового года = 3*1013 км. Расстояние до звезды а Центавра равно 4/3 пс. Измерением годичного параллакса можно надежно установить расстояния до звезд, находящихся не далее 100 пс или 300 световых лет. Расстояния до более далеких звезд в настоящее время можно определить иногда другими методами
B астрономии, видимое перемещение светил на небесной сфере, обусловленное перемещением наблюдателя в пространстве вследствие вращения Земли (суточный параллакс), обращения Земли вокруг Солнца (годичный параллакс) И движения Солнечной системы в Галактике (вековой параллакс). Точно измеренные П. Небесных светил и групп светил позволяют определять расстояния до них. Суточный параллакс Определяют как угол с вершиной в центре небесного светила и со сторонами, направленными к центру Земли и к точке наблюдения на земной поверхности. Величина суточного параллакс Зависит от зенитного расстояния светила и меняется с суточным периодом. Параллакс Светила, находящегося на горизонте места наблюдения, называется горизонтальным параллакс, а если при этом место наблюдения лежит на экваторе,— горизонтальным экваториальным П., постоянным для светил, находящихся на неизменном расстоянии от Земли. Горизонтальный экваториальный параллакс Небесного светила po связан с его геоцентрическим расстоянием r соотношением
,
где R — радиус земного экватора. В значениях горизонтального экваториального П. выражают расстояния до Солнца, Луны и др. тел в пределах Солнечной системы. Для среднего расстояния Солнца принята величина 8,79", для среднего расстояния Луны 57'2,6". На положение звёзд вследствие их большой удалённости суточный П. практически не влияет.
Годичный параллакс — малый угол (при светиле) в прямоугольном треугольнике, в котором гипотенуза есть расстояние от Солнца до звезды, а малый катет — большая полуось земной орбиты. Годичные П. служат для определения расстояний до звёзд; эти П. вследствие их малости могут считаться обратно пропорциональными расстояниям до звёзд (параллаксу 1" соответствует расстояние в 1 Парсек). П. ближайшей звезды — Проксимы Центавра — 0,76". П., определённые путём непосредственных измерений видимых смещений звёзд на фоне значительно более удалённых звёзд, называются тригонометрическими. Тригонометрические П. вследствие их малости удалось измерить лишь для ближайших звёзд. Однако сопоставление вычисленных с их помощью абсолютных звёздных величин этих звёзд с некоторыми особенностями их спектров позволило выявить зависимости, используемые для оценки расстояний до других, более удалённых звёзд, для которых определение тригонометрический П. невозможно. П., вычисленные таким путём, называется спектральными.
Вековой П.— угловое смещение звезды (за год), обусловленное движением Солнечной системы и отнесённое к направлению, перпендикулярному этому движению. В отличие от суточного и годичного П., связанных с периодическими смещениями звёзд на небесной сфере, вековой П. определяется по параллактическому смещению, непрерывно возрастающему стечением времени. Вследствие собственных движений звёзд вековые П. определяются только статистически по отношению к достаточно большой группе звёзд (при этом предполагается, что Пекулярные движения звёзд в этой группе в среднем равны нулю). Вековые П. используются в звёздной астрономии, так как с их помощью можно оценивать расстояния, значительно большие, чем те, которые получают при измерениях годичных П. Однако соответствующие им расстояния верны лишь в среднем для всей охваченной измерениями группы звёзд, для индивидуальных же звёзд они могут значительно отличаться от действительных. ЗВЕЗДНАЯ ВЕЛИЧИНА - мера блеска (Е) небесного светила. Шкала звездной величины определяется формулой m = -2,5 lgE + const. Изменению звездной величины на единицу соответствует изменение блеска в 2,5 раза. Различают звездную величину визуальную, фотографическую и др.
5. Первые представления древних ученых о том, что такое свет, были весьма наивны. Существовало несколько точек зрения. Одни считали, что из глаз выходят особые тонкие щупальца и зрительные впечатления возникают при ощупывании ими предметов. Эта точка зрения имела большое число последователей, среди которых был Эвклид, Птолемей и многие другие ученые и философы. Другие, наоборот, считали, что лучи испускаются светящимся телом и, достигая человеческого глаза, несут на себе отпечаток светящегося предмета. Такой точки зрения придерживались Лукреций, Демокрит. В это же время Эвклидом был сформулирован закон прямолинейного распространения света. Он писал: “Испускаемые глазами лучи распространяются по прямому пути”.Однако позже, уже в средние века, такое представление о природе света теряет свое значение. Все меньше становится ученых, следующих этим взглядам. И к началу XVII в. эти точки зрения можно считать уже забытыми. В 17 веке почти одновременно возникли и начали развиваться две совершенно разные теории о том, что такое свет и какова его природа.
Одна из этих теорий связана с именем Ньютона, а другая - с именем Гюйгенса. Ньютон придерживался так называемой корпускулярной теории света, согласно которой свет - это поток частиц, идущих от источника во все стороны (перенос вещества). Согласно же представлениям Гюйгенса, свет - это поток волн, распространяющихся в особой, гипотетической среде - эфире, заполняющем все пространство и проникающем внутрь всех тел.Обе теории длительное время существовали параллельно. Ни одна из них не могла одержать решающей победы. Лишь авторитет Ньютона заставлял большинство ученых отдавать предпочтение корпускулярной теории. Известные в то время из опыта законы распространения света более или менее успешно объяснялись обеими теориями.На основе корпускулярной теории было трудно объяснить, почему световые пучки, пересекаясь в пространстве, никак не действуют друг на друга. Ведь световые частицы должны сталкиваться и рассеиваться.Волновая же теория это легко объясняла. Волны, например на поверхности воды, свободно проходят друг сквозь друга, не оказывая взаимного влияния. Однако прямолинейное распространение света, приводящее к образованию за предметами резких теней, трудно объяснить, исходя из волновой теории. При корпускулярной же теории прямолинейное распространение света является просто следствием закона инерции.Такое неопределенное положение относительно природы света сохранялось до начала XIX века, когда были открыты явления дифракции света (огибания светом препятствий) и интерференция света (усиление или ослабление освещенности при наложении световых пучков друг на друга). Эти явления присуще исключительно волновому движению. Объяснить их с помощью корпускулярной теории нельзя. Поэтому казалось, что волновая теория одержала окончательную и полную победу. Такая уверенность особенно окрепла, когда Максвелл во второй половине XIX века показал, что свет есть частный случай электромагнитных волн. Работами Максвелла были заложены основы электромагнитной теории света. После экспериментального обнаружения электромагнитных волн Герцем никаких сомнений в том, что при распространении свет ведет себя как волна, не осталось. Однако в нале XIX века представления о природе света начали коренным образом изменяться. Неожиданно выяснилось, что отвергнутая корпускулярная теория все же имеет отношение к действительности. При излучении и поглощении свет ведет себя подобно потоку частиц. Были обнаружены прерывистые, или, как говорят, квантовые, свойства света. Возникла необычная ситуация: явления интерференции и дифракции по-прежнему можно объяснить, считая свет волной, а явления излучения и поглощения - считая свет потоком частиц. Эти два, казалось бы, несовместимых друг с другом представления о природе света в 30-х годах XX века удалось непротиворечивым образом объединить в новой выдающейся физической теории - квантовой электродинамике.
Волновые свойства света. Занимаясь усовершенствованием телескопов, Ньютон обратил внимание на то что, что изображение, даваемое объективом, по краям окрашено. Он заинтересовался этим и первый «исследовал разнообразие световых лучей и проистекающие отсюда особенности цветов, каких до того никто даже не »(слова из надписи на могиле Ньютона) Основной опыт Ньютона был гениально прост. Ньютон догадался направить на призму световой пучок малого поперечного сечения. Пучок солнечного света проходил в затемненную комнату через маленькое отверстие в ставне. Падая на стеклянную призму, он преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов. Следуя многовековой традиции, согласно которой радуга считалась состоящей из семи основных цветов, Ньютон тоже выделил семь цветов: фиолетовый, синий, голубой, зеленый, желтый, оранжевый и красный. Саму радужную полоску Ньютон назвал спектром. Закрывая отверстие красным стеклом, Ньютон наблюдал на стене только красное пятно, закрывая синим-синее и т.д. Отсюда следовало, что не призма окрашивает белый свет, как предполагалось раньше. Призма не изменяет цвета, а лишь разлагает его на составные части. Белый свет имеет сложную структуру. Из него можно выделить пучки различных цветов, и лишь совместное их действие вызывает у нас впечатление белого цвета. В самом деле, если с помощью второй призмы, повернутой на 180 градусов относительно первой. Собрать все пучки спектра, то опять получится белый свет. Выделив же какую-либо часть спектра, например зеленую, и заставив свет пройти еще через одну призму, мы уже не получим дальнейшего изменения окраски. Другой важный вывод, к которому пришел Ньютон, был сформулирован им в трактате по «Оптике» следующим образом: « Световые пучки, отличающиеся по цвету, отличаются по степени преломляемости» Наиболее сильно преломляются фиолетовые лучи, меньше других - красные. Зависимость показателя преломления света от его цвета носит название дисперсии (от латинского слова Dispergo-разбрасываю). В дальнейшем Ньютон усовершенствовал свои наблюдения спектра, чтобы получить более чистые цвета. Ведь круглые цветные пятна светового пучка, прошедшего через призму, частично перекрывали друг друга. Вместо круглого отверстия использовалась узкая щель, освещенная ярким источником. За щелью располагалась линза, дающая на экране изображение в виде узкой белой полоски. Если на пути лучей поместить призму, то изображение щели растянется в спектр, окрашенную полоску, переходы цветов, в которой от красного к фиолетовому подобны наблюдаемым в радуге.
6. ТЕПЛОТА (количество теплоты) - энергетическая характеристика процесса теплообмена, определяется количеством энергии, которое получает (отдает) тело (физическая система) в процессе теплообмена. Теплота - функция процесса: количество сообщенной телу теплоты зависит не только от того, каковы начальное и конечное состояния тела, но также от вида процесса. Элементарное количество теплоты dQ=CdT, где C - теплоемкость тела в рассматриваемом процессе, dT - малое изменение температуры тела. Естественно, что при изменении температуры изменяется и количество теплоты. Измеряется в Джоулях.
ТЕМПЕРАТУРА (от лат. temperatura - надлежащее смешение - нормальное состояние), физическая величина, характеризующая состояние термодинамического равновесия системы. Мера кинетической энергии поступательного движения молекул идеального газа. Температура всех частей изолированной системы, находящейся в равновесии, одинакова. Если система не находится в равновесии, то между ее частями, имеющими различную температуру, происходит теплообмен. Более высокой температурой обладают те тела, у которых средняя кинетическая энергия молекул (атомов) выше. Измеряют температуру термометрами на основе зависимости какого-либо свойства тела (объема, электрического сопротивления и т. п.) от температуры. Теоретически температура определяется на основе второго начала термодинамики как производная от энергии тела по его энтропии. Так, определяемая температура всегда положительна, ее называют абсолютной температурой или температурой по термодинамической температурной шкале (обозначается Т). Измерения температуры ввели для характеристики степени нагретости тел, но при измерениях нельзя полагаться на ощущениях, нужно опираться на объективные критерии. Исследование тепловых явлений началось после изобретения первого термометра. За единицу абсолютной температуры в СИ принят кельвин (К). Значения температуры по шкале Цельсия (t, .С) связаны с абсолютной температурой соотношением t=T-273,15K (1 .С=1 К). Так же существуют шкалы Рихтера, Фаренгейта и др.
При смешивании 2х различно нагретых жидкостей температура смеси будет равна среднему арифметическому начальных температур. За абсолютный ноль по Кельвину принята температура -273 С (-459 F).Кельвин рассчитал, что это самая низкая температура, которую может достигать любая материя. Это температура, при которой прекращается движение молекул. Последняя степень холода.
7. В жидкостях межмолекулярное взаимодействие сказывается сильнее, чем в газах, тепловое движение молекул проявляется с слабых колебаниях около положения равновесия и даже перескоках из одного положения в другое. Поэтому в них имеет место только ближний порядок в расположении частиц, и характерная текучесть. Внутренняя энергия жидкостей состоит из суммы внутренних энергий макроскопических подсистем. Взаимодействие осуществляется через молекулярные силы с радиусом действия порядка 10-6 мм.
Ближайшее окружение частиц в жидкости меняется, т.е. жидкость течет. При достижении определенного значения температуры жидкость закипит, во время кипения температура постоянная. Поступающая энергия расходуется на разрыв связей, и жидкость при полном их разрыве превращается в газ.