Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Контрольная работа_3 / 3-780_Концепция современного естествознания.doc
Скачиваний:
7
Добавлен:
23.06.2014
Размер:
117.76 Кб
Скачать

6) Какие факторы определяли изменение климата планет? Что доказывает единовременное происхождение тел Солнечной системы?

Планеты земной группы, как предполагают ученые, когда-то были похожи друг на друга. Разница в климате возникла из-за разного круговорота углекислого газа при обмене им между корой и атмосферой. Как и водяной пар, углекислый газ является газом парниковым, так как он, пропуская солнечный свет, поглощает тепло планеты и переизлучает часть его к поверхности. Оценки сделанные М. Хартром, показали снижение содержания углекислого газа в атмосфере со скоростью, точно компенсирующей возрастание светимости Солнца.

Он провел аналогичные расчеты для иных, чем у Земли, расстояний от Солнца и получил, что при расстоянии от Солнца меньше 1 а. Е. На 5% атмосфера бы нагрелась настолько, что океаны испарились бы в результате разгоняющегося парникового эффекта, а на расстоянии дальше на 1% а. Е. От Солнца имело бы разгоняющееся оледенение. Только в узкой полоске расстояний между 0,95 и 1,01 А.е. Земля смогла бы избежать этой катастрофы климата.

Нелепо предполагать, что это редкая случайность – появление жизни на нашей планете в таком узком кольце Солнечной системы. Скорее всего, содержание углекислого газа менялось в соответствии с изменением температуры поверхности Земли. Этот режим саморегуляции обеспечил нашей планете устойчивость климата. Эта обратная связь могла обеспечиваться карбонатно-силикатным геохимическим циклом, который способен отвечать за 80% обмена углекислым газом между планетой и ее атмосферой на временных интервалах более 0,5 млн. лет. Началом цикла можно считать растворение содержащегося в атмосфере углекислого газа в водяных капельках и образование угольной кислоты. Дождевые осадки разрушали горные породы, состоявшие из соединений кальция, кремния и кислорода. Угольная кислота вступает в реакцию с породами на поверхности, высвобождая ионы кальция и бикарбоната, которые поступают в грунтовые воды, а за в океан, где оседают в скелетах и раковинах планктона и других организмах, состоящих из карбоната кальция (СаСО3). Останки этих организмов откладываются на океанском дне, формируя осадочные породы. Дно моря расширяется, через много тысяч лет эти породы приблизятся к краям континентов. Дно подтягивает их под берег, они попадают в земные, недра, где на них действуют давление и температура. Карбонат кальция соединяется с кремнием, образуя силикатные породы и выделяя углекислый газ, т. е. происходит карбонатный метаболизм. Газ попадает вновь в атмосферу через извержения вулканов и срединно-океанические хребты.

Изменения температуры земной поверхности влияют на количество углекислого газа в атмосфере и величину парникового эффекта. Пусть по какой-то причине на Земле стало прохладнее. При более низкой температуре меньше воды испарится из океана в атмосферу, меньше выпадет дождей, и уменьшится эрозия почвы, вызванная осадками. Тогда скорость покидания атмосферы углекислым газом уменьшится, а скорость его поступления в атмосферу останется на прежнем уровне. Это приведет к накоплению СО2, усилению парникового эффекта и восстановлению более теплого климата. Если по какой-то причине на Земле произошло потепление, то обратная связь сработает в другую сторону, и равновесие установится. Предположим, что все океаны вымерзли, дожди прекратились, содержание СО, в атмосфере возросло. При современной скорости выделения давление его в 1 бар создается за 20 млн. лет, такого коли углекислого газа хватит на поднятие средней температуры до +50 °С. Значит, льды растают и восстановится нормальный для жизни климат.

В круговороте углекислого газа большую роль играют живые организмы, определяющие изменения климата. Часть углекислого газа (около 20 %), не участвующая в карбонатно-силикатном обмене, вы из атмосферы фотосинтезирующими растениями. При гниении растений и окислении в почве накапливается СО2, в результате его оказывается в почве больше, чем было 400 млн. лет назад до появления растений, поэтому превращение силикатных материалов в осадочные карбонатные породы происходит быстрее. Расчеты пока, что исчезновение растений привело бы в повышению тем на10° за счет отрицательной обратной связи силикатно-карбонатного цикла. Движение планет в Солнечной системе упорядочено: они вращаются вокруг Солнца в одном направлении и почти в одной плоскости. Расстояния от одной планеты до другой возрастают закономерно. Орбиты планет близки к окружностям, что и позволяет им вращаться вокруг Солнца миллиарды лет, не сталкиваясь друг с другом.

Если движение планет подчиняется одному и тому же порядку, то и процесс их образования должен быть единым. Это показали в XVIII в. Иммануил Кант и Пьер Лаплас. Они пришли к выводу, что на месте планет вокруг Солнца первоначально вращалась туманность из газа и пыли.

Но откуда взялась эта туманность? И каким образом газ и пыль превратились в крупные планетные тела? Эти вопросы оставались нерешёнными в космогонии XIX и начала XX в. Камнем преткновения была и проблема момента количества движения планет. Масса всех планет системы в 750 раз меньше массы Солнца.

При этом на долю Солнца приходится лишь 2% общего момента количества движения, а остальные 98% заключены в орбитальном вращении планет.

Вплотную этими проблемами наука занялась лишь во второй половине XX в. Почти до конца 80-х гг. раннюю историю нашей планетной системы приходилось "воссоздавать" лишь на основе данных о ней самой. И только к 90-м гг. стали доступны для наблюдений невидимые ранее объекты - газопылевые диски, вращающиеся вокруг некоторых молодых звёзд, сходных с Солнцем.

Газопылевую туманность, в которой возникли планеты, их спутники, мелкие твёрдые тела - метеориты, астероиды и кометы, называют протопланетным (или допланетным) облаком. Планеты вращаются вокруг Солнца почти в одной плоскости, а значит, и само газопылевое облако имело уплощённую, чечевицеобразную форму, поэтому его называют ещё диском. Учёные полагают, что и Солнце, и диск образовались из одной и той же вращающейся массы межзвёздного газа - протосолнечной туманности. Возраст Солнца насчитывает чуть меньше 5 млрд. лет. Возраст древнейших метеоритов почти такой же: 4,5-4,6 млрд. лет. Столь же стары и рано затвердевшие части лунной коры. Поэтому принято считать, что Земля и другие планеты сформировались 4,6 млрд. лет назад. Солнце относится к звёздам так называемого второго поколения Галактики. Самые старые её звёзды значительно (на 8-10 млрд. лет) старше Солнечной системы. В Галактике есть и молодые звёзды, которым всего 100 тыс. - 100 млн. лет (для звезды это совсем юный возраст). Многие из них похожи на Солнце, и по ним можно судить о начальном состоянии нашей системы.

7) В каком состоянии находится солнечное вещество? Каков состав солнечного излучения? Что такое солнечный ветер? Как он проявляется на Земле? Какова роль неравновесности земной поверхности относительно солнечного излучения?

Газообразное солнечное вещество в глубоких слоях Солнца и во внешних областях его атмосферы практически полностью ионизовано, т. е. фактически является плазмой (в которой все электроны оторваны от атомов); только в сравнительно тонком поверхностном слое солнечное вещество находится в состоянии не полной ионизации. Согласно современным представлениям в глубинах Солнца уже миллиарды лет действует естественный термоядерный реактор, к созданию которого в земных условиях человеческая наука ещё только приближается.

Энергия, выделяющаяся в солнечных недрах в ходе термоядерных реакций в виде жёсткого гамма-излучения, очень медленно (за миллионы лет) просачивается наружу, к поверхности Солнца. При многократных процессах поглощения и переизлучения квантов в толще солнечного вещества происходит постоянное уменьшение частоты первоначального излучения, и на видимой нам поверхности Солнца оно появляется уже в оптическом диапазоне спектра. Также присутствует ультрафиолетовое, тепловое, радио – и рентгеновское излучение.

Начиная с некоторой высоты короны Солнца, возникает истечение солнечной плазмы в межпространство – солнечный ветер. Разряжённая плазма солнечного ветра с большой скоростью расходится во всех направлениях, обтекая магнитосферы Земли и других планет солнечной системы, комет и т. д.

Для Земли солнечный ветер представляет собой поток заряженных частиц постоянного направления, а это не что иное, как электрический ток. Согласно определению направления тока он направлен в сторону, противоположную движению отрицательно заряженных частиц (электронов), т.е. от Земли к Солнцу. При взаимодействии солнечного ветра с возбужденным магнитным полем Земли, на Землю действует вращающий момент, направленный в сторону вращения Земли. Таким образом, Земля относительно солнечного ветра проявляет себя аналогично двигателю постоянного тока с самовозбуждением. Источником энергии (генератором) в данном случае является Солнце. Поскольку и магнитное поле, и вращающий момент, действующий на землю, зависят от тока Солнца, а последний от степени солнечной активности, то при увеличении солнечной активности должен увеличиваться вращающий момент, действующий на Землю и увеличиваться скорость ее вращения. Солнечный ветер вызывает возмущение магнитного поля Земли – магнитные бури и полярные сияния. В периоды повышенной солнечной активности учащаются и усиливаются полярные сияния и магнитные бури на Земле.

Современный взгляд на динамическую систему Земля - Солнце выявил значение солнечной активности. Возникающие флуктуации электромагнитного и корпускулярного излучений Солнца не превышают 10-3 от его общего потока, поэтому влияние солнечной активности на процессы, происходящие на Земле, раньше полностью отрицалось из-за энергетической малости. Однако сейчас установлено это влияние на самые разнообразные процессы в магнитосфере, верхнем и нижнем слоях атмосферы, гидро - и литосфере Земли. Воздействие происходит из-за сильной неравновесности ряда процессов в космическом пространстве, земной атмосфере и на самой Земле. Неравновесность же характеризуется наличием неустойчивостей. Солнечная активность выступает как спусковой крючок, приводящий к раскрытию этих неустойчивостей. Например, солнечная энергия, солнечный ветер влияют на атмосферу и магнитосферу и через них на Землю. Поэтому предполагают, что существует механизм, связанный с этими процессами, который служит "спусковым крючком" и может инициировать землетрясение.

8) Как Вы понимаете проблемы социальной экологии, этологии и социобиологии? Сформулируйте основные поведенческие отличия человека от животного. Что изучает социобиология? Насколько определено генетически социальное поведение человека?

Социобиология, междисциплинарное научное направление, изучает биологические основы социального поведения животных и человека, используя данные этологии, генетики, экологии, эволюционной теории, социальной психологии, этнографии и др. Сложилось в 70-е гг. 20 в. (главным образом в США - Э. О. Уилсон, Д. Бэрэш, Ч. Ламсден, и др.). Социобиология исходит из возможности обнаружения у животных предпосылок поведенческих форм, свойственных человеку. Исследуя альтруистическое, эгоистическое, агрессивное, половое и др. типы поведения, социобиология стремится установить их инварианты у животных и человека. Социобиология ставит проблему взаимосвязи биологического и культурного развития (концепция т. н. генно-культурной коэволюции), синтеза биологического и социогуманитарного знания. Социобиология имеет проблематику, определенную внешними для ее природы и путей развития факторами. Парадоксально специфичным для социальной биологии является то, что центральными проблемами в ней остаются проблемы, по-прежнему важнейшие и для современной социологии. Это, собственно говоря, проблемы социологические. Поставленные еще Контом и Спенсером в качестве центральных проблем социологии это:

1) проблема социального прогресса в форме прогрессивной эволюции животной жизни от одиночного к социальному существованию.

2) проблема социальной организации в форме уровней организации животной жизни.

Этология (от греч. ethos - обычай, нравственный характер и ..логия), биологическая наука, изучающая поведение животных в естественных условиях; уделяет преимущественное внимание анализу генетически обусловленных (наследственных, инстинктивных) компонентов поведения, а также проблемам эволюции поведения. Тесно связана с зоологией эволюционным учением, физиологией, экологией, генетикой. Обширные сведения о поведении животных имелись в трудах естествоиспытателей 18-19 вв. Значительное влияние на изучение поведения животных оказали труды Ч. Дарвина. В современном виде этология возникла в 30-е гг. 20 в., главным образом благодаря работам К. Лоренца и Н. Тинбергена. Термин "этология" ввел в биологию в 1859 И. Жоффруа Сент-Илер.

Социальная экология – наука о глобальных проблемах современности. Ее главными задачами являются: исследование отношения между человеческими сообществами и окружающей географически-пространственной, социальной и культурной средой, прямое и побочное влияние производственной деятельности на состав и свойства окружающей среды. Социальная экология рассматривает биосферу Земли как экологическую нишу человечества, связывая окружающую среду и деятельность человека в единую систему «природа—общество», раскрывает воздействие человека на равновесие природных экосистем, изучает вопросы управления и рационализации взаимоотношения человека и природы. Задача социальной экологии как науки состоит также в том, чтобы предлагать такие эффективные способы воздействия на окружающую среду, которые бы не только предотвращали катастрофические последствия, но и позволяли существенно улучшить биологические и социальные условия развития человека и всего живого на Земле.

Изучая причины деградации среды обитания человека и меры по её защите и совершенствованию, социальная экология должна способствовать расширению сферы свободы человека за счёт создания более гуманных отношений как к природе, так и к другим людям.

В отличие от животных, человек рождается на свет с минимальным набором врожденных поведенческих программ. Для него важнее приобретенные поведенческие программы (стереотипы поведения), которые он получает в процессе воспитания и общения с другими людьми. С эволюционной точки зрения, это весьма важное преимущество. В отличие от животных поведенческая ситуация человека свободна от давления этологических инстинктов. Стратегически-эгоистическому поведению человека не заданы границы, «присущие» его природе.

Человек в значительной степени освобождается от заданных природой «целей» эволюции. Он может сказать своей жизни «нет». Он может сказать «нет» и выживанию своего рода. Наконец, он может отказаться от продолжения своего потомства и сохранения генотипа. Поведенческая ситуация человека как существа разумного характеризуется также тем, что он может утрачивать обычную для животного сенсорно-эмоциональную ориентацию. Если животное не способно действовать вне обстоятельств своего чувственно воспринимаемого мира, то человек способен «перешагивать» императивы ситуации, с которой он имеет эмоционально-смысловую связь и которую может контролировать. В этом случае он совершает действия, результатов которых непосредственно не воспринимает.

Опираясь на последние исследования генетиков, установлено, что наше поведение полностью определено набором соответствующих генов, которые просто заложены в человеке от природы и реализуются в нас как программа. Даже такие вещи как воровство или алкоголизм являются генетически заложенными моделями. Генетически заложены – это неизменны, в том плане, что человеку необходимо родиться заново с новой программой, чтобы не воровать или что бы не пить. В то же время мы видим, что каким-то образом регулирование происходит, каким-то неосознанным действием мы способны корректировать процессы. Однако наши движения в этом плане подобны на движения младенца, который не осознаёт, что имеет руки, но понимает, что как-то же предметы оказываются схваченными.