- •1 Виды теоретических термодинамических циклов двигателя
- •3. Теоретический цикл с подводом теплоты при постоянном давлении
- •4. Теоретический цикл со смешанным подводом теплоты
- •5. Теоретический цикл двигателя с наддувом
- •6 Виды наддува двигателей и конструктивные отличия
- •7 Отличие действительного цикла от теоретического
- •8. Основные периоды впуска
- •9 Параметры впуска
- •10. Зависимость выбора степени сжатия.
- •11. Показатели сжатия в двигателе
- •12. Виды сгорания в двигателе и их комбинации
- •13 Сгорание и тепловыделение в двигателе с искровым воспламенением
- •15. Сгорание и тепловыделение в дизельном двигателе
- •16.Основные параметры процесса сгорания
- •17 Показатели процесса расширения
- •18 Основные периоды выпуска и газообмена
- •19. Основные индикаторные и эффективные показатели двигателя
- •20 Основные параметры цилиндра и двигателя
- •21. Аналитический способ построения индикаторной диаграммы цикла
- •22. Графический способ построения индикаторной диаграммы цикла
- •23.Основные конструктивные параметры кшм
- •24.Показатели и расчет кинематики кшм
- •25. Приведение масс частей кшм
- •26. Силы инерции в кшм и их расчет
- •27 Расчет суммарных сил действующих в кшм
- •29. Силы, действующие на коренные шейки коленчатого вала и их расчет
- •30. Внутренняя и внешняя неуравновешенность .
- •31. Способы уравновешивания одноцилиндрового двигателя
- •32. Уравновешивание V-образного двигателя
- •33. Тепловой баланс двс имеет вид:
- •34. Типы и классификация камер сгорания
- •35. Методика проверки характеристик тнвд и анализ результатов испытаний
- •36. Устройство и принцип работы тнвд
- •37. Методика снятия нагрузочной характеристики двс и анализ результатов испытаний.
- •38. Определение.
- •40.Простой механический инжектор имеет корпус, распылитель, иглу и одну пружину
- •3.6.Порядок выполнения работы.
1 Виды теоретических термодинамических циклов двигателя
. Цикл с подводом теплоты при постоянном объеме теоретический для карбюраторных и газовых двигателей.
2. Смешанный цикл с подводом части теплоты при постоянном объеме и части теплоты при постоянном давлении теоретический для бескомпрессорных дизелей.
2 Горючей смесью в цикле Отто является воздух, смешанный с парами бензина или любым другим легко испаряющимся веществом. При положении поршня в ВМТ и постоянном объеме v2 (см. рисунок, прямая 2—3) осуществляется процесс подвода теплоты к рабочему телу. При этом давление и температура рабочего тела повышаются При движении поршня от ВМТ к НМТ (кривая 3—4) происходит процесс адиабатного расширения газа. Идеальный газ с начальными параметрами p1, v1,T1 сжимается по адиабате 1-2. В изохорном процессе 2-3 рабочему телу от внешнего источника теплоты передается количество теплоты q1. В адиабатном процессе 3-4 рабочее тело расширяется до первоначального объема v4=v1. В изохорном процессе 4-1 рабочее тело возвращается в исходное состояние с отводом от него теплоты q2 в теплоприемник.
3. Теоретический цикл с подводом теплоты при постоянном давлении
В двигателях с постепенным сгоранием топлива воздух сжимается в цилиндре, а жидкое топливо распыляется сжатым воздухом от компрессора. Раздельное сжатие позволяет применять высокие степени сжатия (до e =20 ), исключая преждевременное самовоспламенение топлива. Постоянство давления при горении топлива обеспечивается соответствующей регулировкой топливной форсунки. Конструкция такого двигателя впервые была разработана немецким инженером Дизелем. Этот цикл осуществляется следующим образом. Газообразное рабочее тело с начальными параметрами p1, v1, T1 сжимается по адиабате 1-2. В изобарном процессе 2-3 телу сообщается некоторое количество теплоты q1. В адиабатном процессе 3-4 происходит расширение рабочего тела до первоначального объема. В изохорном процессе 4-1 рабочее тело возвращается в первоначальное состояние с отводом в теплоприемник теплоты q2.
4. Теоретический цикл со смешанным подводом теплоты
С целью упрощения конструкции и увеличения экономичности двигателя русский инженер Г.В.Тринклер разработал проект бескомпрессорного двигателя высокого сжатия. Этот двигатель лишен недостатков рассмотренных выше двух типов двигателей. Основное его отличие в том, что жидкое топливо с помощью топливного насоса подается через форсунку в головку цилиндра, где оно воспламеняется и горит вначале при постоянном объеме, а потом при постоянном давлении. В адиабатном процессе 1-2 рабочее тело сжимается до параметров в точке 2. В изохорном процессе 2-3 к нему подводится первая доля теплоты q1 штрих , а в изобарном процессе 3-4 - вторая - q1 два штриха. В процессе 4-5 происходит адиабатное расширение рабочего тела и по изохоре 5-1 оно возвращается в исходное состояние с отводом теплоты q2 в теплоприемник.
5. Теоретический цикл двигателя с наддувом
После
окончания расширения газов в цилиндре
(zb)
от них отводится теплота
приV=const(ba),
затем используемая в турбине, на входе
в которую поддерживается постоянное
давление (ar).
Адиабатное расширение газов в турбине
изображено линиейrf.
Затем теплота отводится при P=const(fm).
Адиабатное сжатие воздуха в компрессоре
происходит по линии (ma)
Постоянство давления газов перед турбиной достигается тем, что выпускные газы направляются в общий коллектор, объем которого должен быть не менее чем 15 раз больше Vh.Газ поступает в коллектор, расширяется, теряет свою скорость и его кинетическая энергия переходит в тепловую, за счет чего температура газов перед входом в турбину увеличивается.
В том случае, когда Рк>0,2 мПа применяют промежуточное охлаждение наддувочного воздуха («intercooler») с помощью воздухо-воздушного радиатора.
