Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МУ практ зан.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.9 Mб
Скачать

§ 9. Метод наименьших квадратов

Обработка результатов эксперимента. Аппроксимация экспериментальных данных. Параметры выборочного уравнения прямой и криволинейной регрессии по не сгруппированным и сгруппированным данным. Метод наименьших квадратов

Задачи для самостоятельного решения:

По данной таблице определить методом наименьших квадратов квадратичную функцию

1)

хi

102

112

122

132

142

152

162

yi

4

6

10

40

20

12

8

2)

хi

10,6

15,6

20,6

25,6

30,6

35,6

40,6

yi

8

10

60

12

5

3

2

3)

хi

226

232

238

244

250

256

262

yi

5

15

40

25

8

4

3

4)

хi

312,4

3316,4

320,4

324,4

328,4

332,4

336,4

yi

5

15

40

25

8

4

3

5)

хi

110

115

120

125

130

135

140

yi

5

10

30

25

15

10

5

Занятие 8

Регрессионный и корреляционный анализ.

Множественная линейная регрессия

§ 10. Множественная линейная регрессия

Множественная линейная регрессия, остаточная дисперсия, коэффициент детерминации

Общее назначение множественной регрессии (этот термин был впервые использован в работе Пирсона - Pearson, 1908) состоит в анализе связи между несколькими независимыми переменными (называемыми также регрессорами или предикторами) и зависимой переменной.

В многомерном случае, когда имеется более одной независимой переменной, линия регрессии не может быть отображена в двумерном пространстве, однако она также может быть легко оценена. Например, если в дополнение к IQ вы имеете другие предикторы успеваемости (например, Мотивация, Самодисциплина), вы можете построить линейное уравнение, содержащее все эти переменные. Тогда, в общем случае, процедуры множественной регрессии будут оценивать параметры линейного уравнения вида:

Y = a + b1*X1 + b2*X2 + ... + bp*Xp

Коэффициенты могут быть найдены с помощью метода наименьших квадратов.

Остаточная дисперсия и коэффициент детерминации R-квадрат. Чем меньше разброс значений остатков около линии регрессии по отношению к общему разбросу значений, тем, очевидно, лучше прогноз. Например, если связь между переменными X и Y отсутствует, то отношение остаточной изменчивости переменной Y к исходной дисперсии равно 1.0. Если X и Y жестко связаны, то остаточная изменчивость отсутствует, и отношение дисперсий будет равно 0.0. В большинстве случаев отношение будет лежать где-то между этими экстремальными значениями, т.е. между 0.0 и 1.0. 1.0 минус это отношение называется R-квадратом или коэффициентом детерминации. Это значение непосредственно интерпретируется следующим образом. Если имеется R-квадрат равный 0.4, то изменчивость значений переменной Y около линии регрессии составляет 1-0.4 от исходной дисперсии; другими словами, 40% от исходной изменчивости могут быть объяснены, а 60% остаточной изменчивости остаются необъясненными. В идеале желательно иметь объяснение если не для всей, то хотя бы для большей части исходной изменчивости. Значение R-квадрата является индикатором степени подгонки модели к данным (значение R-квадрата близкое к 1.0 показывает, что модель объясняет почти всю изменчивость соответствующих переменных).

Интерпретация коэффициента множественной корреляции R. Обычно, степень зависимости двух или более предикторов (независимых переменных или переменных X) с зависимой переменной (Y) выражается с помощью коэффициента множественной корреляции R. По определению он равен корню квадратному из коэффициента детерминации. Это неотрицательная величина, принимающая значения между 0 и 1. Для интерпретации направления связи между переменными смотрят на знаки (плюс или минус) регрессионных коэффициентов или B-коэффициентов. Если B-коэффициент положителен, то связь этой переменной с зависимой переменной положительна (например, чем больше IQ, тем выше средний показатель успеваемости оценки); если B-коэффициент отрицателен, то и связь носит отрицательный характер (например, чем меньше число учащихся в классе, тем выше средние оценки по тестам). Конечно, если B-коэффициент равен 0, связь между переменными отсутствует. 

Задачи для самостоятельного решения:

Занятие 9

Многомерный статистический анализ.

Дискриминантный анализ