- •Очистные агенты
- •В. И. Зварыгин
- •Часть 1
- •Глава 1 структура промывочных жидкостей
- •Структура воды
- •Структура промывочной жидкости
- •1.3. Приборы для определения прочности структуры промывочных жидкостей
- •1.4. Вязкость промывочных жидкостей
- •1.5. Приборы для замера вязкости
- •1.6. Стабильность бурового раствора
- •1.7. Водоотдача. Приборы для определения водоотдачи
- •1.8. Показатель фильтрации. Приборы для определения показателя фильтрации
- •1.9. Плотность промывочной жидкости. Приборы для определения плотности.
- •Глава 2
- •2.1. Структурообразователи
- •2.2. Структурирование глинистых растворов
- •Структурирование промывочной жидкости за счет диспергирования тердой фазы .
- •2.3. Технические средства для приготовления глинистых растворов
- •2.4. Технические средства для очистки промывочной жидкости
- •Принцип выбора и регулирования промывочнолй жидкости
- •Глава 3 полимеры и полимерные промывочные жидкости
- •3.1. Полимеры – структурообразователи
- •Состав древесины
- •3.2Свойства и функции полимеров
- •3.2. Активация полимеров
- •3.3 Свойства и функции полимеров.
- •3.4 Активация твердой фазы полимерами
- •3.5. Дезактивация дисперсной фазы гидрофобными веществами (пав, полимерами, маслами)
- •3.6 Полимерные растворы
- •3.7Технические средства для приготовления полимерных растворов
- •Глава 4 растворы электролитов
- •4.1. Общие сведения об электролитах, применяемых при бурении скважин
- •Теплота растворения электролитов
- •4.2. Электролиты в роли структурообразователя
- •4.3Роль электролитов
- •Глава 5 эмульсионные промывочные жидкости
- •5.1. Гидрофильные эмульсионные растворы
- •Эмульсионные жидкости-виброгасители
- •5.2. Гидрофобные эмульсии 2го рода
- •Параметры, характеризующие качество эибр:
- •Параметры, характеризующие качество виэр:
- •Составы и свойства тиэр
- •Оптимальные составы утяжеленных тиэр
- •Параметры, характеризующие устойчивость эмульсии, для тиэр:
- •5.3. Технические средства для приготовления эмульсионных промывочных жидкостей
- •Техническая характеристика установки уэм-5
- •Техническая характеристика установки уэм-5
- •Техническая характеристика станции пэс – 2
- •Глава 6 газообразные агенты
- •6.1. Общие понятия. Область применения. Достоинства
- •6.2. Бурение скважин с продувкой сжатым воздухом
- •Оптимальные концентрации пенообразующих пав в зависимости от минерализации пластовой воды
- •6.3. Технические средства для охлаждения и осушения воздуха
- •Техническая характеристика блока осушки завода Курганхиммаш
- •Результаты производственных испытаний осушающе-охлаждающего агрегата
- •6.4 Очистка воздуха от шлама.
- •Глава 7 газожидкостные смеси.
- •7.1 Общие сведения . Область применения
- •7.2. Параметры, характеризующие свойства гжс
- •7.3Пенообразователи . Регулирование свойств гжс
- •7.4. Технические средства получения и нагнетания газожидкостных смесей
- •Характеристики кду на базе насосов 11гр и нб4-320/63
- •Заключение
- •Часть II. Стабилизация неустойчивых стенок скважин. Задачами второй части исследований являются:
- •Глава8.Общие сведения о структуре горных пород.
- •8.1 Химические связи в минералах
- •8.2. Межмолекулярные связи в горных породах.
- •8.3 Поверхностная энергия горных пород.
- •8.4 Устойчивость горных пород стенок скважин.
- •Глава9. Промывочные жидкости для бурения уплотненных глин.
- •9.1. Уплотненные глины
- •Значения коэффициента для различной плотности глины
- •9.2. Осложнения при бурении уплотненных глин.
- •9.2.1. Механизм увлажнения и набухания глин.
- •9.2.2. Фильтрация воды в горные породы.
- •9.2.3. Разупрочнение уплотненных глин.
- •9.2.4. Диспергирование и размывание глин.
- •9.2.5. Влияние гидравлического давления на увлажнение глины.
- •9.2.6. Влияние горного давления на увлажнение глины.
- •9.3. Промывочные жидкости, применяемые для профилактики осложнений в уплотненных глинах
- •9.4. Основные направления выбора промывочной жидкости для бурения глинистых пород
- •9.5. Анализ эффективности применяющихся глинистых растворов для бурения уплотненных глин.
- •9.6. Анализ эффективности полимерных и полимерглинистых растворов.
- •9.7. Анализ эффективности ингибирующих растворов
- •Глава10. Промывочные жидкости для бурения неуплотненных глин
- •10.1. Глинистые неуплотненные породы. Осложнения при их бурении.
- •10.2. Анализ влияния электролитов на увлажнение и прочность неуплотненной глины.
- •Зависимость пластической прочности образца глины от влажности к2
- •10.3. Влияние полимеров и полимерсолевых растворов на увлажнение и прочность неуплотненных глин.
- •10.4. Полимерполисолевые промывочные жидкости, для бурения неуплотненных глин (общие понятия).
- •10.5. Исследование крепящих свойств полимерполисолевых растворов.
- •10.5.1. Теоретические рассуждения.
- •10.5.2. Экспериментальные исследования.
- •11.2. Влияние технологических параметров бурения на раскрытие трещин
- •11.3. Влияние гидродинамического давления на раскрытие трещин
- •11.4. Промывочные жидкости. Механизм их действия. Анализ эффективности.
- •Глава12. Промывочные жидкости для бурения трещиноватых горных пород.
- •12.1. Трещиноватые горные породы
- •12.2. Поглощение промывочной жидкости в трещиноватых породах
- •12.3. Мероприятия по предупреждению поглощения промывочных жидкостей
- •12.4. Анализ эффективности различных наполнителей для кольматации трещин
- •Закупоривающая способность глинистых паст
- •Определение закупоривающей способности вол
- •Закупоривающая способность вус
- •Зависимость объема тампонажной смеси от состава ее компонентов
- •12.5. Применение пен при бурении трещиноватых пород
- •Глава 13 промывочные жидкости для бурения соленосных отложений
- •13.1. Осложнения при бурении соленосных отложений
- •Растворение хемогенных горных пород Растворение горных пород в промывочной жидкости характерно для галлоидов и сульфатов, в меньшей степени карбонатов.
- •Измерение массы и длины образцов соли при растворении в воде
- •Размывание хемогенных пород
- •Зависимость скорости и константы растворения соли от скорости потока
- •13.2 Анализ влияния различных компонентов промывочной жидкости на растворяющую способность раствора
- •Скорость растворений галита в глинистом растворе, м/с10-7
- •Скорость растворения галита в перемешиваемом растворе, м/с10-7 (емкость 10л)
- •Из анализа результатов следует:
- •13.3 Промывочные жидкости, применяемые для бурения соленосных отложений
- •Промывочные жидкости, применяемые в России при бурении соленосных отложений
- •13.4 Анализ качества применяющихся промывочных жидкостей для бурения соленосных отложений
- •Скорость растворения галита в циркулирующих растворах
- •13.5 Силикатные растворы
- •Состав и свойства сульфатосиликатных и карбонатосиликатных растворов
- •13.6Лигниноглинистые растворы
- •Заключение
- •Библиографический список к первой части
- •Часть I. Теоретические основы структурирования промывочных жидкостей 2
- •Глава 1 Структура промывочных жидкостей …………………………………..2
1.3. Приборы для определения прочности структуры промывочных жидкостей
Определение прочности структуры промывочных жидкостей проводят по величине напряжений при сдвиге слоя жидкости (СНС) с помощью различных приборов: ротационных СНС-2, капиллярных пластомеров, приборов Вейлера-Ребиндера и др.
В геологоразведочных организациях прочность структуры определяют преимущественно на ротационных приборах ВСН-2 и СНС-2 (статистического напряжения сдвигу), (рис. 1.5)
Рис.
1.4. Прибор СНС-2.
Прибор СНС-2 состоит из цилиндра 6, подвешенного на упругой проволоке 2 к конусу кронштейна 4 и стакана 7, установленного на вращающемся столике 8. Вращение частотой 0,2 об/мин через редуктор 12 и шкив передается столику от электродвигателя 13. Поверхность подвешенного цилиндра сделана рифленой. На трубке 3, соединенной с цилиндром, укреплен лимб 14 с делениями в градусах. На уровне лимба на кронштейне закреплен указатель 5. Для установки станины прибора на опорах 10 имеются установочные винты для вывода станины в горизонтальное положение.
Порядок работы. Станину приводят в горизонтальное положение. С помощью поворота конуса совмещают нуль лимба 14 с указателем 5.
В
зазор между цилиндром и стаканом заливают
промывочную жидкость до уровня верхнего
основания цилиндра 6. Жидкость с помощью
поворота цилиндра перемешивают и
оставляют в покое на 1 мин., включают
двигатель. Вместе со стаканом вращается
и цилиндр, происходит закручивание
проволоки - 2. После остановки поворота
цилиндра по лимбу определяют максимальный
угол закручивания
,
а по нему статическое напряжение сдвига
где к – константа стальной нити.
Определив
двигатель выключают, промывочную
жидкость вновь перемешивают, нуль лимба
совмещают с указателем, жидкость
оставляют в покое на 10 мин., включают
двигатель, определяют угол закручивания
нити
,
а затем СНС10.
.
1.4. Вязкость промывочных жидкостей
Вязкость (внутреннее трение) – свойство жидкостей оказывать сопротивление при их течении.
Вязкость – один из важнейших показателей промывочных жидкостей. – существенно влияет на эффективность бурения горных пород. Вязкие структурированные растворы способствуют кольматации пор и трещин в горной породе, закреплению стенок скважин в рыхлых и неустойчивых горных породах; вязкие растворы имеют малую водоотдачу, а, следовательно, предотвращают насыщение пористой глинистой породы водой, ее набухание и обвалы стенок скважин. Вязкие растворы обладают высокой несущей способностью и применяются при бурении горных пород, образующих шлам высокой плотности.
Природа вязкости промывочной жидкости та же, что и прочность структуры – межмолекулярное взаимодействие молекул воды и частиц твердой фазы., температуры и размеров сосудов (диаметра труб, зазора между трубами и стенкаи скважин, в котором находится или протекает жидкость) те же, что зависимости прочности структуры от этих величин.. Однако вязкость не всегда соответствут статическому напряжению сдвига. Так, например, в малоглинистых, активированных растворах, растворах с гидрофильной структурой вязкость значительно ниже, чем СНС, так как при течении воды вследствие дезориентации молекул толщина гидратных оболочек уменьшается, а сила межмолекулярного взаимодействия частиц возрастает.
При обработке малоглинистых растворов гибкими полимерами (например, метасом) при повышении концентрации полимера в небольших объемах СНС понижается (за счет повышения толщины гидратного слоя), а вязкость повышается. Дело в том, что полярные (функциональные) группы полимера (по закону полярностей Ребиндера)поворачиваются в сторону фазы с большей полярностью. При течении раствора молекулы воды дезориентируются (движутся более хаотично), полярность воды понижается и полярные группы поворачиваются в сторону более полярной поверхности глинистых частиц, а гидрофобной в сторону воды. В результате частицы становятся более гидрофобными и, как следствие, вязкость раствора сначала возрастает (до некоторого предела концентрации полимера, а затем при образовании второго слоя полимера понижается.
За единицу вязкости принимают касательные усилия при течении жидкости, приходящиеся на единицу площади (касательные напряжения, Па) при разности скоростей между слоями равной dV=м/с и расстояния между ними dr=1м.
Для ньютоновских жидкостей
,
(1.3)
где η – коэффициент вязкости.
Для бингамовских (вязкопластичных) жидкостей (глинистых растворов)
,
(1.4)
где τ0 – динамическое напряжение сдвига, η – коэффициент пластической вязкости.
К оэффициент пластической вязкости при использовании вискозиметра ВСН-3 определяют из соотношения
,
(1.5)
а динамическое напряжение сдвига
,
Па (1.6)
где φ – угол поворота лимба, град, вискозиметра ВСН-3.
Вязкость структурированных жидкостей можно определить и по формуле
,
Па,
(1.7)
Вязкость (касательные напряжения сдвига) псевдопластичных жидкостей (активированных малоглинистых, полимерных, полимерглинистых растворов) при
n = 600об/мин определяют по степенному закону
.
(1.8)
С другой стороны касательные напряжения можно выразить через коэффициент трения и радиальное давление жидкости
.
(1.9)
В соответствии с законом Бернулли у стенок внутреннего цилиндра (боба) вискозиметра ВСН-3, где V = 0
,
(1.10)
у стенок вращающегося внешнего цилиндра V = Vц
,
(1.11)
тогда радиальное давление
P
= P0
– Pц
=
.
(1.12)
При V0 = Vц Р = 0.
Из уравнений (1.8), (1.9) и (1.12)
,
(1.13)
где η0 – показатель вязкости.
Таким образом, касательные напряжения сдвига определяются двумя показателями: коэффициентом трения f (межмолекулярного взаимодействия молекул воды и частиц твердой фазы), зависящим от концентрации твердой фазы, скорости течения и размеров труб с одной стороны и радиального давления с другой стороны.
При
повышении скорости течения коэффициент
трения понижается и тем интенсивнее,
чем меньше показатель степени (чем ниже
гидрофильность глинистых частиц, выше
глиноёмкость раствора). При некоторой
значительной концентрации, когда
молекулярные связи между частицами
окажутся выше, чем с поверхностью частиц,
скорость течения по всему сечению потока
окажется одинаковой V
= Vц,
радиальное давление снизится до нуля,
следовательно, взаимодействие молекул
воды со стенками трубы возрастает, и
раствор будет перемещаться в трубе как
твердое тело. Энергия затрачивается
только на трение раствора о трубу
,
и касательные напряжения не будут
зависеть от скорости течения (n
= 0, τ = τ0
= const).
