- •Очистные агенты
- •В. И. Зварыгин
- •Часть 1
- •Глава 1 структура промывочных жидкостей
- •Структура воды
- •Структура промывочной жидкости
- •1.3. Приборы для определения прочности структуры промывочных жидкостей
- •1.4. Вязкость промывочных жидкостей
- •1.5. Приборы для замера вязкости
- •1.6. Стабильность бурового раствора
- •1.7. Водоотдача. Приборы для определения водоотдачи
- •1.8. Показатель фильтрации. Приборы для определения показателя фильтрации
- •1.9. Плотность промывочной жидкости. Приборы для определения плотности.
- •Глава 2
- •2.1. Структурообразователи
- •2.2. Структурирование глинистых растворов
- •Структурирование промывочной жидкости за счет диспергирования тердой фазы .
- •2.3. Технические средства для приготовления глинистых растворов
- •2.4. Технические средства для очистки промывочной жидкости
- •Принцип выбора и регулирования промывочнолй жидкости
- •Глава 3 полимеры и полимерные промывочные жидкости
- •3.1. Полимеры – структурообразователи
- •Состав древесины
- •3.2Свойства и функции полимеров
- •3.2. Активация полимеров
- •3.3 Свойства и функции полимеров.
- •3.4 Активация твердой фазы полимерами
- •3.5. Дезактивация дисперсной фазы гидрофобными веществами (пав, полимерами, маслами)
- •3.6 Полимерные растворы
- •3.7Технические средства для приготовления полимерных растворов
- •Глава 4 растворы электролитов
- •4.1. Общие сведения об электролитах, применяемых при бурении скважин
- •Теплота растворения электролитов
- •4.2. Электролиты в роли структурообразователя
- •4.3Роль электролитов
- •Глава 5 эмульсионные промывочные жидкости
- •5.1. Гидрофильные эмульсионные растворы
- •Эмульсионные жидкости-виброгасители
- •5.2. Гидрофобные эмульсии 2го рода
- •Параметры, характеризующие качество эибр:
- •Параметры, характеризующие качество виэр:
- •Составы и свойства тиэр
- •Оптимальные составы утяжеленных тиэр
- •Параметры, характеризующие устойчивость эмульсии, для тиэр:
- •5.3. Технические средства для приготовления эмульсионных промывочных жидкостей
- •Техническая характеристика установки уэм-5
- •Техническая характеристика установки уэм-5
- •Техническая характеристика станции пэс – 2
- •Глава 6 газообразные агенты
- •6.1. Общие понятия. Область применения. Достоинства
- •6.2. Бурение скважин с продувкой сжатым воздухом
- •Оптимальные концентрации пенообразующих пав в зависимости от минерализации пластовой воды
- •6.3. Технические средства для охлаждения и осушения воздуха
- •Техническая характеристика блока осушки завода Курганхиммаш
- •Результаты производственных испытаний осушающе-охлаждающего агрегата
- •6.4 Очистка воздуха от шлама.
- •Глава 7 газожидкостные смеси.
- •7.1 Общие сведения . Область применения
- •7.2. Параметры, характеризующие свойства гжс
- •7.3Пенообразователи . Регулирование свойств гжс
- •7.4. Технические средства получения и нагнетания газожидкостных смесей
- •Характеристики кду на базе насосов 11гр и нб4-320/63
- •Заключение
- •Часть II. Стабилизация неустойчивых стенок скважин. Задачами второй части исследований являются:
- •Глава8.Общие сведения о структуре горных пород.
- •8.1 Химические связи в минералах
- •8.2. Межмолекулярные связи в горных породах.
- •8.3 Поверхностная энергия горных пород.
- •8.4 Устойчивость горных пород стенок скважин.
- •Глава9. Промывочные жидкости для бурения уплотненных глин.
- •9.1. Уплотненные глины
- •Значения коэффициента для различной плотности глины
- •9.2. Осложнения при бурении уплотненных глин.
- •9.2.1. Механизм увлажнения и набухания глин.
- •9.2.2. Фильтрация воды в горные породы.
- •9.2.3. Разупрочнение уплотненных глин.
- •9.2.4. Диспергирование и размывание глин.
- •9.2.5. Влияние гидравлического давления на увлажнение глины.
- •9.2.6. Влияние горного давления на увлажнение глины.
- •9.3. Промывочные жидкости, применяемые для профилактики осложнений в уплотненных глинах
- •9.4. Основные направления выбора промывочной жидкости для бурения глинистых пород
- •9.5. Анализ эффективности применяющихся глинистых растворов для бурения уплотненных глин.
- •9.6. Анализ эффективности полимерных и полимерглинистых растворов.
- •9.7. Анализ эффективности ингибирующих растворов
- •Глава10. Промывочные жидкости для бурения неуплотненных глин
- •10.1. Глинистые неуплотненные породы. Осложнения при их бурении.
- •10.2. Анализ влияния электролитов на увлажнение и прочность неуплотненной глины.
- •Зависимость пластической прочности образца глины от влажности к2
- •10.3. Влияние полимеров и полимерсолевых растворов на увлажнение и прочность неуплотненных глин.
- •10.4. Полимерполисолевые промывочные жидкости, для бурения неуплотненных глин (общие понятия).
- •10.5. Исследование крепящих свойств полимерполисолевых растворов.
- •10.5.1. Теоретические рассуждения.
- •10.5.2. Экспериментальные исследования.
- •11.2. Влияние технологических параметров бурения на раскрытие трещин
- •11.3. Влияние гидродинамического давления на раскрытие трещин
- •11.4. Промывочные жидкости. Механизм их действия. Анализ эффективности.
- •Глава12. Промывочные жидкости для бурения трещиноватых горных пород.
- •12.1. Трещиноватые горные породы
- •12.2. Поглощение промывочной жидкости в трещиноватых породах
- •12.3. Мероприятия по предупреждению поглощения промывочных жидкостей
- •12.4. Анализ эффективности различных наполнителей для кольматации трещин
- •Закупоривающая способность глинистых паст
- •Определение закупоривающей способности вол
- •Закупоривающая способность вус
- •Зависимость объема тампонажной смеси от состава ее компонентов
- •12.5. Применение пен при бурении трещиноватых пород
- •Глава 13 промывочные жидкости для бурения соленосных отложений
- •13.1. Осложнения при бурении соленосных отложений
- •Растворение хемогенных горных пород Растворение горных пород в промывочной жидкости характерно для галлоидов и сульфатов, в меньшей степени карбонатов.
- •Измерение массы и длины образцов соли при растворении в воде
- •Размывание хемогенных пород
- •Зависимость скорости и константы растворения соли от скорости потока
- •13.2 Анализ влияния различных компонентов промывочной жидкости на растворяющую способность раствора
- •Скорость растворений галита в глинистом растворе, м/с10-7
- •Скорость растворения галита в перемешиваемом растворе, м/с10-7 (емкость 10л)
- •Из анализа результатов следует:
- •13.3 Промывочные жидкости, применяемые для бурения соленосных отложений
- •Промывочные жидкости, применяемые в России при бурении соленосных отложений
- •13.4 Анализ качества применяющихся промывочных жидкостей для бурения соленосных отложений
- •Скорость растворения галита в циркулирующих растворах
- •13.5 Силикатные растворы
- •Состав и свойства сульфатосиликатных и карбонатосиликатных растворов
- •13.6Лигниноглинистые растворы
- •Заключение
- •Библиографический список к первой части
- •Часть I. Теоретические основы структурирования промывочных жидкостей 2
- •Глава 1 Структура промывочных жидкостей …………………………………..2
Глава8.Общие сведения о структуре горных пород.
Структура, как отмечено выше, это совокупность устойчивых связей объекта, обеспечивающих его целостность и тождественность самому себе, т.е. сохранение основных свойств при различных внешних и внутренних изменениях.
Эта совокупность устойчивых связей в горных породах представлена химическими связями и межмолекулярным взаимодействием.
8.1 Химические связи в минералах
К химическим связям относят ковалентные и ионные связи, возникшие между атомами при сближении их на достаточно близкое расстояние (порядка 0,1 - 0,5 нм). При этом возможны два случая. Первый случай, когда из неспаренных электронов (наружного электронного облака) различных атомов образуются электронные пары (валентные орбитали) с разными спинами, принадлежащими одновременно обоим атомам. При этом электронные облака атомов частично перекрываются, вследствие чего плотность отрицательного заряда в перекрываемой зоне между ядрами атомов возрастает. Возрастает и сила взаимодействия (притяжения) ядер (с положительным зарядом) к этой зоне. Образуется весьма прочная связь между атомами. Эта связь, как известно, носит название ковалентной.
Во втором случае при взаимодействии двух атомов один из них отдаёт, а другой принимает электроны. При этом первый атом превращается в катион, второй в анион, в результате чего возникает их взаимное притяжение. Эта связь носит название ионной.
Прочность ковалентной связи зависит от межъядерного расстояния. Чем оно меньше, тем прочнее связь между атомами. Межъядерные расстояния примерно равны сумме атомных радиусов взаимодействующих атомов. В табл. 9.1 показаны атомные радиусы наиболее распространенных элементов. Для сравнения здесь же приведены их ионные радиусы.[М.Х.Карапетьянс, С.И.Дракин]
Таблица 8.1
Атомные и ионные радиусы химических элементов
Период элемента |
Элемент |
Атомный радиус,пм |
Ионный радиус, пм |
2 |
Li+ Be2+ B3+ C4+ N5+ O2- F- |
155 113 80 55 72 60 71 |
68 35 23 16 13 132 133 |
3 |
Na+ Mg2+ Al3+ Si4+ P5+ S2- Cl- |
189 160 143 118 95 102 99 |
97 66 51 42 35 174 181
|
4 |
K+ Ca2+ Fe2+ Fe3+ Ti4+ V6 Se2- Br- |
236 197 125 125 146 134 116 114 |
133 99 72 63 68 59 191 196 |
5:6 |
Cs+ Ba2+ Zr4+ Ta5+ W6+ - I- - |
268 221 160 145 140 - 113 - |
167 134 87 69 62 - 220 - |
Однако энергия связи между атомами определяется не только межъядерным расстоянием, но и электроотрицательностью взаимодействующих атомов. Если взаимодействующие атомы имеют различную электроотрицательность, то под воздействием электрического поля атома с большей электроотрицательностью в его сторону смещается электронное облако другого атома. Это смещение облака ведет к поляризации атома и дальнейшему увеличению прочности связи. Такие связи называют ионоковалентными. Для атомов с небольшими межядерным расстояниями и различной электроотрицательностью энергию связи можно вычислить по формуле Полинга
E=(E1+E2)/2+100*Э кДж/моль
, (1)
где E1 и Е2 - энергии связи взаимодействующих атомов в простых молекулах; Э - разность электроотрицательностей.
Наименьшими атомными радиусами обладают атомы второго периода периодической таблицы Менделеева. Поливалентные атомы этого периода способны образовывать не одну, а несколько общих валентных орбиталей кратных связей: двойных, тройных (табл. 2)
Таблица 8.2
Прочность химических связей соединений элементов второго периода
Химичес- кий элемент |
Соединения |
||||
С кислородом (оксиды) |
С азотом (нитриды) |
С углеродом (карбиды) |
С бором (бориды) |
С водородом (гидриды) |
|
O |
147 493 (650) |
222 607 |
358 803 |
- 80010 |
428 268197 |
N |
222 607 - |
164 419 946 |
- 761 701 |
385 - - |
310 - - |
C |
358 803 1072 |
- 890 - |
346 611 837 |
448 81240 - |
- - - |
B |
- 800100 - |
385 - 830 |
448 81240 - |
27621 - - |
338 (452) - - |
H |
428 |
310 |
333 |
368 |
432 (255) |
Cl |
265 |
- |
39329 |
548 |
428 |
S |
550 (521) |
46021 |
710 |
582 |
3498 |
P |
59410 |
7303 |
- |
- |
34330 |
Si |
803 |
- |
43021 |
- |
30221 |
Al |
75013 |
360 |
- |
- |
290 |
Из табл. 2 видно, что наибольшей прочностью обладают ионоковалентные и ковалентные тройные связи, затем ионоковалентные двойные связи второго периода:
C+O- (1072 кДж/моль) B+N- (830 кДж/моль)
N N ( 946 кДж/моль) B+C- (812 кДж/моль)
C C ( 837 кДж/моль) B O- (800 кДж/моль)
Такие же связи, но менее прочные, вследствие увеличения атомных радиусов, образуют аналоги элементов третьего периода:
Si+O- (803 кДж/моль)
Al+O- (750 кДж/моль)
P+ O- (800 кДж/моль)
Из перечисленных соединений нитриды, карбиды, бориды и гидриды в природе встречаются редко, т.к. при образовании минералов (в период остывания магмы) атомы азота, обладающие сильными связями (до 946 кДж/моль), объединялись в молекулы азота и выделялись в атмосферу, атомы углерода соединились с атомами кислорода (их прочность связей достигает 1072 кДж/моль) и тоже выделялись в атмосферу в виде углекислого газа. Относительно невысокое содержание углекислого газа в атмосфере объясняется тем, что он поглощается растениями и вступает в соединения с металлами, образуя карбонаты. При отсутствии углерода и азота бор образует прочные связи с кислородом воздуха - оксиды бора, которые являются структурными элементами боритов. Водород так же имеет наиболее прочные связи с кислородом, что приводит к образованию воды (гидросферы).
Широко распространены в природе только оксиды. Кислород является связующим элементом почти всех (за небольшим исключением) соединений неорганического мира. Кислород в неорганическом мире имеет такое же значение, как углерод в органическом
Много кислорода содержится в воздухе (21 %), а в виде соединений ОН находится в земной коре (около 50 %) и воде. Кислород образует прочные связи со всеми элементами. Наиболее прочны связи кислорода с углеродом, азотом, бором, серой, фосфором, вольфрамом, ниобием, титаном, танталом, с которыми он образует классы окислов, карбидов, нитратов, боритов, сульфатов, вольфрамов, титано-тантало-ниобатов и других минералов.
Из окислов наиболее прочные соединения кислорода с углеродом (СО) - 1076 кДж/моль, с кремнием SiO (803 кДж/моль), алюминием AlO (750 кДж/моль), поэтому около 90 % земной коры представлено силикатами и алюмосиликатами. По прочности связь близка к прочности алмаза (873 кДж/моль), но поскольку атомный радиус обладает большим размером, то прочность кварца почти в 10 раз меньше прочности алмаза. Кроме того, на прочность минерала оказывает влияние и плотность упаковки атомов.
Плотность упаковки корунда значительно выше, чем у кварца, поэтомy,несмотря на меньшую прочность химических связей, он ближе по твердости к алмазу.
Но не только химические связи определяют прочность минерала и породы в целом. Большое влияние на нее оказывает тип структуры минерала. При координационной структуре и плотной упаковке кристаллов связь равномерная, а прочность связей максимальная. При островной и кольцевой структуре твердость минерала зависит от катиона, связывавшего полиэдры (чаще всего тетраэдры). Для железисто-магнезиальных островных силикатов она равна около 7. Для кольцевых минералов с ионными типами связей малой крепости - 3-4 (ангидрид, апатит и др.).
Каркасные силикаты в связи с пористой структурой имеют, несколько меньшую твердость (около 6). Листовые силикаты имеют прочные связи в листах, но между листами химические (межатомные) связи отсутствуют. Здесь действуют только слабые межмолекулярные связи. Твердость таких минералов низка (1-3).
Тип структуры, плотность упаковки минералов, а, следовательно, прочность межатомных связей зависят от давления и температуры их кристаллизации. Координационная и островная структуры с плотной упаковкой атомов (алмаз, гранаты и др.) характерны для минералов, образованных при высоком давлении и температуре. Каркасные силикаты с неплотной упаковкой образуются при относительно небольших давлениях и температуре.
Как видно из формулы (1), поляризация атомов под воздействием сильно электроотрицательных соседних атомов-партнеров резко повышает прочность связей. При сильном воздействии электроотрицателъности соседнего атома (или электрического поля группы атомов) за счет сильной поляризации даже одновалентные атомы (например, водород) могут приобрести вторую координационную (донорно-акцепторную) связь. Частным случаем такой связи является водородная связь.
