- •Очистные агенты
- •В. И. Зварыгин
- •Часть 1
- •Глава 1 структура промывочных жидкостей
- •Структура воды
- •Структура промывочной жидкости
- •1.3. Приборы для определения прочности структуры промывочных жидкостей
- •1.4. Вязкость промывочных жидкостей
- •1.5. Приборы для замера вязкости
- •1.6. Стабильность бурового раствора
- •1.7. Водоотдача. Приборы для определения водоотдачи
- •1.8. Показатель фильтрации. Приборы для определения показателя фильтрации
- •1.9. Плотность промывочной жидкости. Приборы для определения плотности.
- •Глава 2
- •2.1. Структурообразователи
- •2.2. Структурирование глинистых растворов
- •Структурирование промывочной жидкости за счет диспергирования тердой фазы .
- •2.3. Технические средства для приготовления глинистых растворов
- •2.4. Технические средства для очистки промывочной жидкости
- •Принцип выбора и регулирования промывочнолй жидкости
- •Глава 3 полимеры и полимерные промывочные жидкости
- •3.1. Полимеры – структурообразователи
- •Состав древесины
- •3.2Свойства и функции полимеров
- •3.2. Активация полимеров
- •3.3 Свойства и функции полимеров.
- •3.4 Активация твердой фазы полимерами
- •3.5. Дезактивация дисперсной фазы гидрофобными веществами (пав, полимерами, маслами)
- •3.6 Полимерные растворы
- •3.7Технические средства для приготовления полимерных растворов
- •Глава 4 растворы электролитов
- •4.1. Общие сведения об электролитах, применяемых при бурении скважин
- •Теплота растворения электролитов
- •4.2. Электролиты в роли структурообразователя
- •4.3Роль электролитов
- •Глава 5 эмульсионные промывочные жидкости
- •5.1. Гидрофильные эмульсионные растворы
- •Эмульсионные жидкости-виброгасители
- •5.2. Гидрофобные эмульсии 2го рода
- •Параметры, характеризующие качество эибр:
- •Параметры, характеризующие качество виэр:
- •Составы и свойства тиэр
- •Оптимальные составы утяжеленных тиэр
- •Параметры, характеризующие устойчивость эмульсии, для тиэр:
- •5.3. Технические средства для приготовления эмульсионных промывочных жидкостей
- •Техническая характеристика установки уэм-5
- •Техническая характеристика установки уэм-5
- •Техническая характеристика станции пэс – 2
- •Глава 6 газообразные агенты
- •6.1. Общие понятия. Область применения. Достоинства
- •6.2. Бурение скважин с продувкой сжатым воздухом
- •Оптимальные концентрации пенообразующих пав в зависимости от минерализации пластовой воды
- •6.3. Технические средства для охлаждения и осушения воздуха
- •Техническая характеристика блока осушки завода Курганхиммаш
- •Результаты производственных испытаний осушающе-охлаждающего агрегата
- •6.4 Очистка воздуха от шлама.
- •Глава 7 газожидкостные смеси.
- •7.1 Общие сведения . Область применения
- •7.2. Параметры, характеризующие свойства гжс
- •7.3Пенообразователи . Регулирование свойств гжс
- •7.4. Технические средства получения и нагнетания газожидкостных смесей
- •Характеристики кду на базе насосов 11гр и нб4-320/63
- •Заключение
- •Часть II. Стабилизация неустойчивых стенок скважин. Задачами второй части исследований являются:
- •Глава8.Общие сведения о структуре горных пород.
- •8.1 Химические связи в минералах
- •8.2. Межмолекулярные связи в горных породах.
- •8.3 Поверхностная энергия горных пород.
- •8.4 Устойчивость горных пород стенок скважин.
- •Глава9. Промывочные жидкости для бурения уплотненных глин.
- •9.1. Уплотненные глины
- •Значения коэффициента для различной плотности глины
- •9.2. Осложнения при бурении уплотненных глин.
- •9.2.1. Механизм увлажнения и набухания глин.
- •9.2.2. Фильтрация воды в горные породы.
- •9.2.3. Разупрочнение уплотненных глин.
- •9.2.4. Диспергирование и размывание глин.
- •9.2.5. Влияние гидравлического давления на увлажнение глины.
- •9.2.6. Влияние горного давления на увлажнение глины.
- •9.3. Промывочные жидкости, применяемые для профилактики осложнений в уплотненных глинах
- •9.4. Основные направления выбора промывочной жидкости для бурения глинистых пород
- •9.5. Анализ эффективности применяющихся глинистых растворов для бурения уплотненных глин.
- •9.6. Анализ эффективности полимерных и полимерглинистых растворов.
- •9.7. Анализ эффективности ингибирующих растворов
- •Глава10. Промывочные жидкости для бурения неуплотненных глин
- •10.1. Глинистые неуплотненные породы. Осложнения при их бурении.
- •10.2. Анализ влияния электролитов на увлажнение и прочность неуплотненной глины.
- •Зависимость пластической прочности образца глины от влажности к2
- •10.3. Влияние полимеров и полимерсолевых растворов на увлажнение и прочность неуплотненных глин.
- •10.4. Полимерполисолевые промывочные жидкости, для бурения неуплотненных глин (общие понятия).
- •10.5. Исследование крепящих свойств полимерполисолевых растворов.
- •10.5.1. Теоретические рассуждения.
- •10.5.2. Экспериментальные исследования.
- •11.2. Влияние технологических параметров бурения на раскрытие трещин
- •11.3. Влияние гидродинамического давления на раскрытие трещин
- •11.4. Промывочные жидкости. Механизм их действия. Анализ эффективности.
- •Глава12. Промывочные жидкости для бурения трещиноватых горных пород.
- •12.1. Трещиноватые горные породы
- •12.2. Поглощение промывочной жидкости в трещиноватых породах
- •12.3. Мероприятия по предупреждению поглощения промывочных жидкостей
- •12.4. Анализ эффективности различных наполнителей для кольматации трещин
- •Закупоривающая способность глинистых паст
- •Определение закупоривающей способности вол
- •Закупоривающая способность вус
- •Зависимость объема тампонажной смеси от состава ее компонентов
- •12.5. Применение пен при бурении трещиноватых пород
- •Глава 13 промывочные жидкости для бурения соленосных отложений
- •13.1. Осложнения при бурении соленосных отложений
- •Растворение хемогенных горных пород Растворение горных пород в промывочной жидкости характерно для галлоидов и сульфатов, в меньшей степени карбонатов.
- •Измерение массы и длины образцов соли при растворении в воде
- •Размывание хемогенных пород
- •Зависимость скорости и константы растворения соли от скорости потока
- •13.2 Анализ влияния различных компонентов промывочной жидкости на растворяющую способность раствора
- •Скорость растворений галита в глинистом растворе, м/с10-7
- •Скорость растворения галита в перемешиваемом растворе, м/с10-7 (емкость 10л)
- •Из анализа результатов следует:
- •13.3 Промывочные жидкости, применяемые для бурения соленосных отложений
- •Промывочные жидкости, применяемые в России при бурении соленосных отложений
- •13.4 Анализ качества применяющихся промывочных жидкостей для бурения соленосных отложений
- •Скорость растворения галита в циркулирующих растворах
- •13.5 Силикатные растворы
- •Состав и свойства сульфатосиликатных и карбонатосиликатных растворов
- •13.6Лигниноглинистые растворы
- •Заключение
- •Библиографический список к первой части
- •Часть I. Теоретические основы структурирования промывочных жидкостей 2
- •Глава 1 Структура промывочных жидкостей …………………………………..2
3.4 Активация твердой фазы полимерами
Ранее отмечено, что ПАВ и полимеры так же, как и ионы, способны адсорбироваться на поверхности глинистых частиц.
Ориентирование ПАВ и полимеров идет по правилу уравнения полярностей Ребиндера: полярные группы обращаются к полярной фазе, а неполярные к неполярной фазе.
При адсорбции на поверхности твердого тела силикатного и алюмосиликатного типа (глинистое частицы) значительный вклад в адсорбционное взаимодействие вносит водородная связь между адсорбатом и адсорбентом. В этом отношении практический интерес представляет гидролизный лигнин и его производные. Известно, что наличие в структуре гидролизного лигнина значительного числа гидроксидных и эфирных групп обусловливает его способность к образованию водородных связей. Благодаря ярко выраженным сорбционным свойствам ароматических соединений, в частности лигнина, их склонности к процессам физической адсорбции, их способности подвергаться окислительно-гидролитическому расщеплению в кислой и щелочной среде и взаимодействовать с электрофильными реагентами лигнин оказывается отличным материалом для получения поверхностноактивных веществ, используемых для обработки глинистых частиц (разжижения и стабилизации буровых растворов). Большинство реагентов стабилизаторов - разжижителей являются производными от лигнина. Это ССБ, нитролигнин, игетан, окзил, ФХЛС и др.
Все ПАВ дифильны и при введении в раствор они адсорбируются на глинистых частицах гидрофобной (водородной) частью в сторону частиц, а полярной в сторону воды, за счёт чего увеличивается активность глинистых частиц. Активация частиц приводит к повышению толщины и уменьшению прочности сольватной оболочки, к снижению прочности структуры (разжижению) глинистого раствора.
Поверхностно-активные вещества используют не только для стабилизации твёрдой фазы, но и стабилизации эмульсий (глобул масла в воде). В этом случае неполярная (водородная) часть молекул ПАВ размещается в глобуле масла, а полярная в воде. В качестве эмульгаторов применяют также преимущественно ароматические соединения: УФЭ8, ОПИ, ОП7, ОП10, сульфонол, НП.
Активацию глинистых частиц с целью стабилизации раствора проводят и высокомолекулярными полимерами. Эти полимеры могут адсорбироваться не только на поверхности полярных (заряженных) частиц, но и при отсутствии на них потенциала. Высокомолекулярные полимеры при незначительной их концентрации используют в качестве понизителей вязкости, при значительной - в качестве структурообразователя, для повышения прочности структуры и понижения водоотдачи.
На рис. 3.3 показана зависимость прочности структуры и водоотдачи 4%-го бентонитового раствора от концентрации щелочного полимера (метаса).
При введении в раствор небольшого количества полимера (≈0,025%). под воздействием активность и толщина гидратного слоя глинистых частиц повышается, а прочность структуры раствора понижается.
При увеличении концентрации метаса (до ≈ 0,05 %) на частицах глины образуется второй (гидрофобный) слой метаса. Толщина гидратного слоя уменьшается, а её прочность возрастает, прочность структуры также возрастает. В растворе появляются флокулы-агрегаты глинистых частиц.
При дальнейшем повышении концентрации полимера адсорбируется третий (гидрофильный) слой. Вновь наблюдается понижение прочности структура раствора. Однако вследствие увеличения толщины адсорбированного слоя прочность сцепления макромолекул полимера с частицами глины понижается. Основная часть метаса поступает в объем раствора (а не адсорбируется на глинистых частицах). Поэтому процесс мобилизации третьего слоя и снижение прочности структуры раствора происходят менее активно, чем при адсорбирования первого слоя .
Рис. 3.3. Зависимость прочности структуры и водоотдачи 4%-ного бентонитового раствора от концентрации метаса.
Интересно, что показатель фильтрации раствора с увеличением концентрации метаса все время понижается как в области активаций глинистых частиц, так и в
области их дезактивации (рис. 3.3). Это связано с тем, что с увеличением концентрации метаса в растворе увеличивается толщина и плотность полимерной пленки на фильтре.
М
ногие
полимеры вследствие их высокой
гидрофильности слабо адсорбируются на
глинистых частицах. Они служат только
как структурообразователи для повышения
прочности структуры и снижения вязкости
бурового раствора. К таким полимерам
относится и гидролизованный полиакриламид
(ГПАА).
Рис. 3.4. Зависимость прочности структуры θ и водоотдачи 6%-ного бентонитового раствора от концентрации ГПАА
На рис. 3.4 показана зависимость прочности структуры и водоотдачи от концентрации ГПАА. Из графика видно, что даже при малых концентрациях полимера наблюдается значительное повышение прочности структуры раствора.
Такие полимеры способны адсорбироваться только под воздействием сильного силового поля (стенок скважин, стенок бурильных труб).
