- •Часть I. Живые системы
- •Глава 1. Свойства и происхождение жизни
- •1.1. Предмет, задачи и методы биологии
- •1.2. Свойства живой материи
- •1.3. Уровни организации живой природы
- •1.4. Происхождение жизни
- •Глава 2. Химический состав живых организмов
- •2.1. Элементный состав
- •2.2. Молекулярный состав
- •2.2.1. Неорганические вещества
- •2.2.1.2. Минеральные соли
- •2.2.2. Органические вещества
- •2.2.2.1. Углеводы
- •2.2.2.2. Липиды
- •2.2.2.3. Белки
- •2.2.2.4. Нуклеиновые кислоты
- •Глава 3. Строение клетки
- •3.1. Типы клеточной организации
- •3.2. Строение эукариотической клетки
- •3.2.2. Цитоплазма
- •3.2.3. Ядро
- •Глава 4. Обмен веществ и превращение энергии
- •4.1. Типы питания живых организмов
- •4.2. Понятие о метаболизме
- •4.3. Атф и ее роль в метаболизме
- •4.4. Энергетический обмен
- •4.5. Пластический обмен
- •4.5.1. Фотосинтез
- •4.5.2. Хемосинтез
- •4.5.3. Биосинтез белка
- •Глава 5. Размножение и индивидуальное развитие организмов
- •5.1. Воспроизведение клеток
- •5.1.1. Хромосомный набор
- •5.1.2. Клеточный цикл
- •5.1.3. Деление клетки
- •5.1.3.1. Митоз
- •5.1.3.2. Мейоз
- •5.2. Размножение организмов
- •5.2.1. Бесполое размножение
- •5.2.2. Половое размножение
- •5.2.2.1. Половые клетки
- •5.2.2.2. Образование половых клеток
- •5.2.2.3. Оплодотворение
- •5.3. Индивидуальное развитие организмов
- •5.3.1. Типы онтогенеза
- •5.3.2. Эмбриональное развитие
- •Глава 6. Генетика и селекция
- •6.1. Наследственность
- •6.1.1. Основные понятия
- •6.1.2. Законы г.Менделя
- •6.1.3. Сцепленное наследование. Нарушение сцепления
- •6.1.4. Генетика пола
- •6.1.5. Генетика крови
- •6.1.6. Взаимодействие генов
- •6.1.7. Хромосомная теория наследственности
- •6.2. Изменчивость
- •6.2.4. Основные методы генетики
- •6.3. Селекция
- •Глава 7. Эволюция
- •7.1. Эволюционное учение
- •7.1.1. Развитие эволюционных идей
- •7.1.2. Микроэволюция
- •7.1.2.1. Вид и популяции
- •7.1.2.2. Генетика популяций
- •7.1.2.3. Элементарные факторы эволюции
- •7.1.2.4. Видообразование
- •7.1.3. Макроэволюция
- •7.1.3.1. Дивергенция и конвергенция
- •7.1.3.2. Главные направления эволюции
- •7.1.3.3. Главные пути эволюции
- •7.2. Развитие органического мира
- •7.2.1. Доказательства эволюции органического мира
- •7.2.2. Краткая история развития органического мира
- •7.3. Происхождение человека 7.3.1. Ч.Дарвин о происхождении человека
- •7.3.2. Эволюция человека
- •7.3.3. Расы современного человека
- •Глава 8. Многообразие живых организмов
- •8.1. Систематика, классификация и таксономия живых организмов
- •II. Клеточные формы.
- •1. Надцарство Прокариоты (Procariota):
- •2. Надцарство Эукариоты (Eycariota):
- •8.2. Характеристика основных систематических групп организмов
- •8.2.1. Вирусы
- •8.2.2. Прокариоты
- •8.2.3. Грибы
- •8.2.4. Растения
- •8.2.5. Животные
- •Часть II. Человек и его здоровье
- •Глава 9. Человек
- •9.1. Ткани, органы, регуляция жизнедеятельности
- •9.1.1. Ткани
- •9.1.2. Органы и системы органов
- •9.1.3. Нервная и гуморальная регуляции деятельности организма
- •9.2. Опорно-двигательная система
- •9.2.1. Скелет
- •9.2.1.1. Строение костей
- •9.2.1.2. Соединения костей
- •9.2.1.3. Отделы скелета
- •9.2.2. Скелетные мышцы
- •9.2.2.1. Строение мышц
- •9.2.2.2. Работа мышц
- •9.3. Пищеварительная система и обмен веществ
- •9.3.1. Пищеварительная система
- •9.3.1.1. Питательные вещества и пищевые продукты
- •9.3.1.2. Строение и функции органов пищеварения
- •9.3.1.3. Пищеварение в ротовой полости
- •9.3.1.4. Пищеварение в желудке
- •9.3.1.5. Пищеварение в кишечнике
- •9.3.1.6. Всасывание
- •9.3.2. Обмен веществ
- •9.3.2.1. Обмен белков
- •9.3.2.2. Обмен углеводов
- •9.3.2.3. Обмен жиров
- •9.3.2.4. Водно-солевой обмен
- •9.3.2.5. Витамины
- •9.4. Дыхательная система
- •9.4.1. Внешнее дыхание
- •9.4.2. Транспорт газов
- •9.4.3. Газообмен в легких и тканях
- •9.5. Выделительная система
- •9.6. Кровеносная система
- •9.6.1. Кровь
- •9.6.1.1. Плазма крови
- •9.6.1.2. Форменные элементы крови
- •9.6.1.3. Свертывание крови
- •9.6.1.4. Переливание крови
- •9.6.1.5. Иммунитет
- •9.6.2. Кровообращение
- •9.6.2.1. Строение сердца
- •9.6.2.2. Работа сердца
- •9.6.2.3. Сосуды
- •9.6.2.5. Кровяное давление и пульс
- •9.6.2.6. Лимфатическая система
- •9.7. Нервная система и высшая нервная деятельность
- •9.7.1. Нервная система
- •9.7.1.1. Рефлексы
- •9.7.1.2. Спинной мозг
- •9.7.1.3. Головной мозг
- •9.7.1.4. Вегетативная нервная система
- •9.7.2. Высшая нервная деятельность
- •9.7.2.1. Безусловные и условные рефлексы
- •9.7.2.2. Психика, психические явления, поведение человека
- •9.7.2.3. Сознание
- •9.8. Органы чувств (анализаторы)
- •9.9. Кожа
- •9.10. Железы внутренней секреции
- •9.11. Размножение и развитие
- •9.11.1. Мужская и женская половые системы
- •9.11.2. Развитие организма
- •Глава 10. Факторы здоровья и факторы риска
- •10.1. Понятие фактора здоровья и фактора риска
- •10.2. Генетические факторы
- •10.3. Состояние окружающей среды
- •10.4. Медицинское обеспечение
- •10.5. Условия и образ жизни
- •10.6. Доминирующие факторы риска и их проявления в современном обществе
- •Часть III. Экология и охрана природы
- •Глава 11. Общая экология
- •11.1. Экология особей
- •11.1.1. Среды жизни и экологические факторы
- •11.1.2. Адаптации организмов к условиям среды
- •11.1.3. Законы действия экологических факторов
- •11.1.4. Основные экологические факторы
- •11.1.5. Биологические ритмы
- •11.2. Экология популяций
- •11.2.1. Понятие о популяции
- •11.2.2. Статические показатели популяции
- •11.2.3. Динамические показатели популяции
- •11.2.4. Экологические стратегии выживания популяций
- •11.2.5. Регуляция численности (плотности) популяции
- •11.3. Экология сообществ и экосистем
- •11.3.1. Понятие о биоценозе, биогеоценозе, экосистеме
- •11.3.2. Типы связей и взаимоотношений между организмами
- •11.3.3. Структура и функционирование экосистем
- •11.3.4. Биологическая продуктивность экосистем
- •11.3.5. Динамика экосистем
- •11.3.6. Природные экосистемы (биомы)
- •11.3.6.1. Наземные экосистемы
- •11.3.6.2. Водные экосистемы
- •11.3.6.3. Пресноводные экосистемы
- •11.3.6.4. Морские экосистемы
- •11.3.7. Антропогенные экосистемы: агроэкосистемы и урбосистемы
- •Глава 12. Биосфера земли
- •12.1. Геосферы земли
- •12.1.1. Общая характеристика планеты Земля
- •12.1.2. Атмосфера
- •12.1.3. Гидросфера
- •12.1.4. Литосфера и внутреннее строение Земли
- •12.1.5. Педосфера (почвенный покров)
- •12.2. Строение и свойства биосферы
- •12.2.1. Строение и границы биосферы
- •12.2.2. Распределение жизни в биосфере
- •12.2.3. Функции живого вещества
- •12.2.4. Свойства биосферы
- •12.2.5. Круговорот веществ в биосфере
- •12.2.6. Ноосфера как стадия эволюции биосферы
- •Глава 13. Рациональное природопользование и охрана окружающей среды
- •13.1. Предмет и задачи природопользования и охраны природы
- •13.1.1. Понятие о природопользовании и охране природы
- •13.1.2. Мотивы рационального природопользования и охраны природы
- •13.1.3. Принципы (правила) рационального природопользования и охраны природы
- •13.1.4. Природная среда: природные ресурсы и природные условия
- •13.1.5. Классификация природных ресурсов
- •13.2. Взаимоотношения природы и общества
- •13.2.1. Воздействие человека на природу и природы на человека
- •13.2.2. Экологический кризис и экологическая катастрофа
- •13.2.3. История взаимоотношений общества и природы
- •13.2.4. Важнейшие экологические проблемы современности
- •13.2.5. Глобальные прогностические модели
- •13.3. Мероприятия по охране окружающей среды и рационализации природопользования
- •13.3.1. Малоотходные и безотходные технологии
- •13.3.2. Нормирование качества окружающей среды
- •13.3.3. Особо охраняемые природные территории
- •13.3.4. Мониторинг окружающей среды
- •13.3.6. Экологизация сознания
- •13.3.7. Международное сотрудничество в области природопользования и охраны окружающей среды
2.2.2.2. Липиды
Липиды - жиры и жироподобные органические соединения, практически нерастворимые в воде. Их содержание в разных клетках сильно варьирует: от 2-3 до 50-90% в клетках семян растений и жировой ткани животных. В химическом отношении липиды, как правило, сложные эфиры жирных кислот и ряда спиртов. Они делятся на несколько классов: нейтральные жиры, воска, фосфолипиды, стероиды и др.
Функции липидов:
1.Строительная (структурная). Фосфолипиды вместе с белками являются основой биологических мембран. Холестерин - важный компонент клеточных мембран у животных.
2.Гормональная (регуляторная). Многие гормоны по химической природе являются стероидами (тестостерон, прогестерон, кортизон).
3.Энергетическая. При окислении 1 г жирных кислот высвобождается 38 кДж энергии и синтезируется в два раза большее количество АТФ, чем при расщеплении такого же количества глюкозы.
4.Запасающая. В виде жиров хранится значительная часть энергетических запасов организма. Кроме того, жиры служат в качестве источника воды (при сгорании 1 г жира образуется 1,1 г воды). Это особенно ценно для пустынных и арктических животных, испытывающих дефицит свободной воды.
5.Защитная. У млекопитающих подкожный жир выступает в качестве термоизолятора. Воск покрывают эпидермис растений, перья, шерсть, волосы животных, предохраняя от смачивания.
6.Участие в метаболизме. Витамин D играет ключевую роль в обмене кальция и фосфора.
2.2.2.3. Белки
Белки - это биологические гетерополимеры, мономерами которых являются аминокислоты.
По химическому составу аминокислоты - это соединения, содержащие одну карбоксильную группу (-СООН) и одну аминную (-NH2), связанные с одним атомом углерода, к которому присоединена боковая цепь - какой-нибудь радикал R (именно он придает аминокислоте ее неповторимые свойства).
В образовании белков участвуют только 20 аминокислот. Они называются фундаментальными или основными: аланин, метионин, валин, пролин, лейцин, изолейцин, триптофан, фенилаланин, аспарагин, глутамин, серин, глицин, тирозин, треонин, цистеин, аргинин, гистидин, лизин, аспарагиновая и глутаминовая кислоты. Некоторые из аминокислот не синтезируются в организмах животных и человека и должны поступать с растительной пищей (они называются незаменимыми).
Аминокислоты, соединяясь друг с другом ковалентными пептидными связями, образуют различной длины пептиды. Пептидной (амидной) называется ковалентная связь, образованная карбоксильной группой одной аминокислоты и аминной группой другой. Белки представляют собой высокомолекулярные полипептиды, в состав которых входят от ста до нескольких тысяч аминокислот.
Выделяют 4 уровня организации белков:
Первичная структура - последовательность аминокислот в полипептидной цепи. Она образуется за счет ковалентных пептидных связей между аминокислотными остатками. Первичная структура определяется последовательностью нуклеотидов в участке молекулы ДНК, кодирующем данный белок. Первичная структура любого белка уникальна и определяет его форму, свойства и функции.
Вторичная структура образуется укладкой полипептидных цепей в -спираль или -структуру. Она поддерживается за счет водородных связей между атомами водорода групп NH- и атомами кислорода групп СО-. -спираль формируется в результате скручивания полипептидной цепи в спираль с одинаковыми расстояниями между витками. Она характерна для глобулярных белков, имеющих сферическую форму глобулы. -структура представляет собой продольную укладку трех полипептидных цепей. Она характерна для фибриллярных белков, имеющих вытянутую форму фибриллы. Третичную и четвертичную структуры имеют только глобулярные белки.
Третичная структура образуется при сворачивании спирали в клубок (глобулу, или домен). Домены - глобулоподобные образования с гидрофобной сердцевиной и гидрофильным наружным слоем. Третичная структура формируется за счет связей, образующихся между радикалами R аминокислот, за счет ионных, гидрофобных и дисперсионных взаимодействий, а также за счет образования дисульфидных (S-S) связей между радикалами цистеина.
Четвертичная структура характерна для сложных белков, состоящих из двух и более полипептидных цепей, не связанных ковалентными связями, а также для белков, содержащих небелковые компоненты (ионы металлов, коферменты). Четвертичная структура поддерживается такими же химическими связями, как и третичная.
Конфигурация белка зависит от последовательности аминокислот, но на нее могут влиять и конкретные условия, в которых находится белок.
Утрата белковой молекулой своей структурной организации называется денатурацией. Денатурация может быть обратимой и необратимой. При обратимой денатурации разрушается четвертичная, третичная и вторичная структуры, но благодаря сохранению первичной структуры при возвращении нормальных условий возможна ренатурация белка - восстановление нормальной (нативной) конформации.
По химическому составу различают простые и сложные белки. Простые белки состоят только из аминокислот (фибриллярные белки, иммуноглобулины). Сложные белки содержат белковую часть и небелковую - простетические группы. Различают липопротеины (содержат липиды), гликопротеины (углеводы), фосфопротеины (одну или несколько фосфатных групп), металлопротеины (различные металлы), нуклеопротеины (нуклеиновые кислоты). Простетические группы обычно играют важную роль при выполнении белком его биологической функции.
Функции белков:
1.Каталитическая (ферментативная). Все ферменты являются белками. Белки-ферменты катализируют протекание в организме химических реакций.
2.Строительная (структурная). Ее осуществляют фибриллярные белки кератины (ногти, волосы), коллаген (сухожилия), эластин (связки).
3.Транспортная. Ряд белков способен присоединять и переносить различные вещества (гемоглобин переносит кислород).
4.Гормональная (регуляторная). Многие гормоны являются веществами белковой природы (инсулин регулирует обмен глюкозы).
5.Защитная. Иммуноглобулины крови являются антителами; фибрин и тромбин участвуют в свертывании крови.
6.Сократительная (двигательная). Актин и миозин образуют микрофиламены и осуществляют сокращение мышц, тубулин образует микротрубочки.
7.Рецепторная (сигнальная). Некоторые белки, встроенные в мембрану, "воспринимают информацию" из окружающей среды.
8.Энергетическая. При расщеплении 1 г белков высвобождается 17,6 кДж энергии.
Ферменты. Белки-ферменты катализируют протекание в организме химических реакций. Эти реакции в силу энергетических причин, сами по себе либо вообще не протекают в организме, либо протекают слишком медленно.
По своей биохимической природе все ферменты - высокомолекулярные белковые вещества, обычно четвертичной структуры. Все ферменты помимо белка содержат небелковые компоненты. Белковая часть называется апоферментом, а небелковая - кофактор (если это простое неорганическое вещество, например, Zn2+) или кофермент (коэнзим) (если это органическое соединение).
В молекуле фермента имеется активный центр, состоящий из двух участков - сорбционного (отвечает за связывание фермента с молекулой субстрата) и каталитического (отвечает за протекание собственно катализа). В ходе реакции фермент связывает субстрат, последовательно изменяет его конфигурацию, образуя ряд промежуточных молекул, дающих в конечном итоге продукты реакции.
Отличие ферментов от катализаторов неорганической природы состоит в следующем:
1.Один фермент катализирует только один тип реакций.
2.Активность ферментов ограничена довольно узкими температурными рамками (обычно 35-45 0С).
3.Ферменты активны при определенных значениях рН (большинство в слабощелочной среде).
