Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Справочный материал по госам.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
9.4 Mб
Скачать

125. Общая характеристика методов расчёта нелинейных электрических цепей постоянного тока.

  Известные аналитические методы непригодны для расчета нелинейных электрических цепей, так как сопротивления нелинейных элементов зависят от направления и значения тока или напряжения. Применяются графоаналитические методы, основанные на применении законов Кирхгофа и использовании заданных вольтамперных характеристик (ВАХ) этих элементов. Рассмотрим электрическую цепь, состоящую из двух последовательно соединенных нелинейных сопротивлений н.с.1 и н.с.2 (рис. 5.6). ВАХ 1 и ВАХ 2 приведены на рис. 5.7.

К цепи подведено напряжение U, и оно равно сумме падений напряжений на н.с.1 и н.с.2: 

     (5.1)

     По всей цепи протекает один и тот же ток I, так как н.с.1 и н.с.2 соединены между собой последовательно. Для определения тока в электрической цепи нужно построить результирующую ВАХ цепи. Для построения этой характеристики следует суммировать абсциссы кривых 1 и 2 (аг = аб + ав), соответствующие одним и те же значениям тока. Далее, задаваясь произвольным значением тока (например, больше I' и меньше I' ) можно построить ВАХ всей цепи (рис. 5.7, кривая 3). Затем, пользуясь этой ВАХ, можно найти искомый ток всей цепи и искомые напряжения на н.с.1 и н.с.2. Для этого отложим на оси абсцисс отрезок   (mu - масштаб напряжения источника питания) и проведем из точки p прямую, перпендикулярную оси абсцисс до пересечения с кривой 3. Получим отрезок np = ko. Ток   (mI - масштаб тока всей цепи). Для найденного тока по ВАХ 1 и ВАХ 2 находим напряжения U1 и U2.  ;       .

     При параллельном соединении двух нелинейных элементов (рис. 5.8) ток в неразветвленной части электрической цепи равен сумме токов в параллельных определенных ветвях. Поэтому при построении результирующей ВАХ всей цепи следует суммировать ординаты графиков 1 и 2 (рис. 5.9), соответствующие одним и те же значениям напряжения, так как к этим нелинейным элементам приложено одно и то же напряжение, равное напряжению внешней сети, т.е. источника питания. Например, для произвольного значения напряжения  находим ординату аг точки для результирующей кривой 3.  (аг = ав + аб) 

Далее задаваясь произвольным значением напряжения больше и меньше U', можно построить ВАХ всей цепи (кривая 3). Затем, пользуясь ВАХ, можно при любом значении приложенного напряжения U (отрезок ор) найти величину общего тока I (pn = oк). Это напряжение также определяет значения токов I1 и I2 в отдельных ветвях с учетом масштаба тока mI.

        В случае смешанного (рис. 5.10) соединения расчет цепи производят в следующем порядке: сначала заменяют два параллельно соединенных нелинейных элемента одним эквивалентным; схема со смешанным соединением приводится к рассмотренной ранее схеме последовательного соединения двух нелинейных элементов.

126. Магнитная цепь, её разновидности. Закон полного тока. Магнитодвижущая сила.

4 .1. Магнитное поле и его параметры

Направление магнитных линий и направление создающего их тока связаны между собой известным правилом правоходового винта (буравчика) (рис. 4.1).

Рис. 4.1. Магнитное поле прямолинейного проводника и катушки. Правило Буравчика

Основной величиной, характеризующей интенсивность и направление магнитного поля является – вектор магнитной индукции  , которая измеряется в Теслах [Тл].

Вектор   направлен по касательной к магнитной линии, направление вектора совпадает с осью магнитной стрелки, помещенной в рассматриваемую точку магнитного поля.

Величина   определяется по механической силе, действующей на элемент проводника с током, помещенный в магнитное поле.

Е сли   во всех точках поля имеет одинаковую величину и направление, то такое поле называется равномерным.

  зависит не только от величины I, но и от магнитных свойств окружающей среды.

Второй важной величиной, характеризующей магнитное поле является – магнитный поток  , который измеряется в Веберах [Вб].

Элементарным магнитным потоком Ф сквозь бесконечно малую площадку называется величина (рис. 4.2)

dФ = B cos α dS, где α – угол между направлением   и нормалью   к площадке dS.

а) б) Рис. 4.2. Определение магнитного потока, пронизывающего: а) произвольную поверхность; б) плоскую поверхность в равномерном магнитном поле

Сквозь поверхность S [м2] Ф = s∫ dФ = s∫ B cos α dS, Если магнитное поле равномерное, а поверхность S представляет собой плоскость Ф = B S.

При исследовании магнитных полей и расчете магнитных устройств пользуются расчетной величиной   – напряженность магнитного поля [А/м] , где μа – абсолютная магнитная проницаемость среды.

Для неферромагнитных материалов и сред (дерево, бумага, медь, алюминий, воздух) μа не отличается от магнитной проницаемости вакуума и равна μo = 4 p · 10-7, Гн/м (Генри/метр). У ферромагнетиков μа переменная и зависит от В.